Inference in first-order Logic

Chapter 9

Universal instantiation (UI)

Every instantiation of a universally quantified sentence is entailed by it:

$$
\frac{\forall v \alpha}{\operatorname{SuBSt}(\{v / g\}, \alpha)}
$$

for any variable v and ground term g
E.g., $\forall x \operatorname{King}(x) \wedge \operatorname{Greed} y(x) \Rightarrow \operatorname{Evil}(x)$ yields

$$
\begin{aligned}
& \operatorname{King}(J o h n) \wedge G r e e d y(J o h n) \Rightarrow \operatorname{Evil}(\text { John }) \\
& \text { King }(\text { Richard }) \wedge \text { Greedy }(\text { Richard }) \Rightarrow \text { Evil }(\text { Richard }) \\
& \text { King }(\text { Father }(\text { John })) \wedge \text { Greedy }(\text { Father }(\text { John })) \Rightarrow \operatorname{Evil}(\text { Father }(\text { John }))
\end{aligned}
$$

Existential instantiation (EI)

For any sentence α, variable v, and constant symbol k that does not appear elsewhere in the knowledge base:
$\frac{\exists v \alpha}{\operatorname{SuBST}(\{v / k\}, \alpha)}$
E.g., $\exists x \operatorname{Crown}(x) \wedge \operatorname{OnHead}(x$, John $)$ yields
$\operatorname{Crown}\left(C_{1}\right) \wedge$ OnHead $\left(C_{1}\right.$, John $)$
provided C_{1} is a new constant symbol, called a Skolem constant
Another example: from $\exists x d\left(x^{y}\right) / d y=x^{y}$ we obtain

$$
d\left(e^{y}\right) / d y=e^{y}
$$

provided e is a new constant symbol

Existential instantiation contd.

UI can be applied several times to add new sentences; the new KB is logically equivalent to the old

El can be applied once to replace the existential sentence; the new KB is not equivalent to the old, but is satisfiable iff the old KB was satisfiable

Bob loves someone.
If someone loves someone, then that person loves them back.
Prove:
Someone loves bob.

Unification

Suppose the KB contains just the following:

```
\(\forall x \operatorname{King}(x) \wedge \operatorname{Greedy}(x) \Rightarrow \operatorname{Evil}(x)\)
King(John)
\(\forall y\) Greedy \((y)\)
Brother(Richard, John)
```

We can get the inference immediately if we can find a substitution θ such that $\operatorname{King}(x)$ and Greedy (x) match King (John) and Greedy (y)
$\theta=\{x /$ John, $y /$ John $\}$ works
$\operatorname{Unify}(\alpha, \beta)=\theta$ if $\alpha \theta=\beta \theta$

p	q	θ
Knows $($ John, $x)$	Knows(John, Jane)	
Knows John, $x)$	Knows $(y$, OJ	
Knows John, $x)$	Knows $(y$, Mother $(y))$	
Knows John,$x)$	Knows $(x$, OJ $)$	

Unification

We can get the inference immediately if we can find a substitution θ such that $\operatorname{King}(x)$ and $\operatorname{Greedy}(x)$ match $\operatorname{King}(J o h n)$ and $\operatorname{Greedy}(y)$ $\theta=\{x / J o h n, y / J o h n\}$ works
$\operatorname{Unify}(\alpha, \beta)=\theta$ if $\alpha \theta=\beta \theta$

p	q	θ
Knows $($ John, $x)$	Knows(John, Jane)	$\{x /$ Jane $\}$
Knows $J o h n, x)$	Knows $(y$, OJ	
Knows John, $x)$	Knows $(y$, Mother $(y))$	
Knows John, $x)$	Knows $(x$, OJ $)$	

Unification

We can get the inference immediately if we can find a substitution θ such that $\operatorname{King}(x)$ and $\operatorname{Greedy}(x)$ match $\operatorname{King}(J o h n)$ and $\operatorname{Greedy}(y)$ $\theta=\{x / J o h n, y / J o h n\}$ works
$\operatorname{Unify}(\alpha, \beta)=\theta$ if $\alpha \theta=\beta \theta$

p	q	θ
Knows $($ John, $x)$	Knows(John, Jane)	$\{x /$ Jane $\}$
Knows John, $x)$	Knows $(y$, OJ)	$\{x / O J, y /$ John $\}$
Knows $($ John, $x)$	Knows $(y$, Mother $(y))$	
Knows $($ John, $x)$	Knows $(x$, OJ $)$	

Unification

We can get the inference immediately if we can find a substitution θ such that $\operatorname{King}(x)$ and $\operatorname{Greedy}(x)$ match $\operatorname{King}(J o h n)$ and $\operatorname{Greedy}(y)$ $\theta=\{x / J o h n, y / J o h n\}$ works
$\operatorname{Unify}(\alpha, \beta)=\theta$ if $\alpha \theta=\beta \theta$

p	q	θ
Knows(John, x)	Knows(John, Jane)	$\{x / J a n e\}$
Knows(John, x)	K nows (y, OJ)	$\{x / O J, y / J o h n\}$
Knows(John, x)	Knows(y, Mother(y))	\{y/John, x/Mother(John) $\}$
Knows(John, x)	K nows (x, OJ)	

Unification

We can get the inference immediately if we can find a substitution θ such that $\operatorname{King}(x)$ and $\operatorname{Greedy}(x)$ match $\operatorname{King}(J o h n)$ and $\operatorname{Greedy}(y)$ $\theta=\{x / J o h n, y / J o h n\}$ works
$\operatorname{Unify}(\alpha, \beta)=\theta$ if $\alpha \theta=\beta \theta$

Standardizing apart eliminates overlap of variables, e.g., $\operatorname{Knows}\left(z_{17}, O J\right)$

Generalized Modus Ponens (GMP)

$$
\frac{p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{n}{ }^{\prime},\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n} \Rightarrow q\right)}{q \theta} \quad \text { where } p_{i}^{\prime} \theta=p_{i} \theta \text { for all } i
$$

```
p}\mp@subsup{}{1}{\prime}\mathrm{ is }\operatorname{King}(John) \quad p1 is King(x
p}\mp@subsup{}{2}{\prime}\mathrm{ is }\operatorname{Greedy(y) }\quad\mp@subsup{p}{2}{}\mathrm{ is Greedy(x)
0 is {x/John,y/John} q is Evil(x)
q0 is Evil(John)
```

GMP used with KB of definite clauses (exactly one positive literal) All variables assumed universally quantified

Soundness of GMP

Need to show that

$$
p_{1}^{\prime}, \ldots, p_{n}^{\prime}, \quad\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \models q \theta
$$

provided that $p_{i}{ }^{\prime} \theta=p_{i} \theta$ for all i
Lemma: For any definite clause p, we have $p \models p \theta$ by UI

1. $\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \models\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \theta=\left(p_{1} \theta \wedge \ldots \wedge p_{n} \theta \Rightarrow q \theta\right)$
2. $p_{1}{ }^{\prime}, \ldots, p_{n}{ }^{\prime} \models p_{1}{ }^{\prime} \wedge \ldots \wedge p_{n}{ }^{\prime} \models p_{1}{ }^{\prime} \theta \wedge \ldots \wedge p_{n}{ }^{\prime} \theta$
3. From 1 and 2, $q \theta$ follows by ordinary Modus Ponens

Example knowledge base

The law says that it is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is American.

Prove that Col. West is a criminal

Example knowledge base contd.

... it is a crime for an American to sell weapons to hostile nations:

Example knowledge base contd.

. . . it is a crime for an American to sell weapons to hostile nations:
American $(x) \wedge W$ eapon $(y) \wedge \operatorname{Sells}(x, y, z) \wedge \operatorname{Hostile}(z) \Rightarrow \operatorname{Criminal}(x)$
Nono . . . has some missiles

Example knowledge base contd.

... it is a crime for an American to sell weapons to hostile nations:
American $(x) \wedge W$ eapon $(y) \wedge \operatorname{Sells}(x, y, z) \wedge \operatorname{Hostile}(z) \Rightarrow \operatorname{Criminal}(x)$
Nono . . . has some missiles, i.e., $\exists x \operatorname{Owns}($ Nono,$x) \wedge \operatorname{Missile}(x)$:
Owns (Nono, M_{1}) and Missile $\left(M_{1}\right)$
... all of its missiles were sold to it by Colonel West

Example knowledge base contd.

... it is a crime for an American to sell weapons to hostile nations:
American $(x) \wedge W$ eapon $(y) \wedge \operatorname{Sells}(x, y, z) \wedge \operatorname{Hostile}(z) \Rightarrow \operatorname{Criminal}(x)$
Nono . . . has some missiles, i.e., $\exists x \operatorname{Owns}($ Nono,$x) \wedge \operatorname{Missile}(x)$:
Owns (Nono, M_{1}) and Missile $\left(M_{1}\right)$
... all of its missiles were sold to it by Colonel West
$\forall x \operatorname{Missile}(x) \wedge O w n s($ Nono,$x) \Rightarrow \operatorname{Sells}($ West, x, Nono)
Missiles are weapons:

Example knowledge base contd.

... it is a crime for an American to sell weapons to hostile nations:
American $(x) \wedge W$ eapon $(y) \wedge \operatorname{Sells}(x, y, z) \wedge \operatorname{Hostile}(z) \Rightarrow \operatorname{Criminal}(x)$
Nono . . . has some missiles, i.e., $\exists x \operatorname{Owns}(\operatorname{Nono}, x) \wedge \operatorname{Missile}(x)$:
Owns(Nono, M_{1}) and Missile $\left(M_{1}\right)$
... all of its missiles were sold to it by Colonel West
$\forall x \operatorname{Missile}(x) \wedge O w n s($ Nono,$x) \Rightarrow \operatorname{Sells}($ West, x, Nono)
Missiles are weapons:
$\operatorname{Missile}(x) \Rightarrow W e a p o n(x)$
An enemy of America counts as "hostile":

Example knowledge base contd.

... it is a crime for an American to sell weapons to hostile nations:
American $(x) \wedge W$ eapon $(y) \wedge \operatorname{Sells}(x, y, z) \wedge \operatorname{Hostile}(z) \Rightarrow \operatorname{Criminal}(x)$
Nono . . . has some missiles, i.e., $\exists x \operatorname{Owns}(\operatorname{Nono}, x) \wedge \operatorname{Missile}(x)$:
Owns(Nono, M_{1}) and Missile $\left(M_{1}\right)$
... all of its missiles were sold to it by Colonel West

$$
\forall x \operatorname{Missile}(x) \wedge O w n s(\text { Nono }, x) \Rightarrow \operatorname{Sells}(\text { West }, x, \text { Nono })
$$

Missiles are weapons:
Missile $(x) \Rightarrow W e a p o n(x)$
An enemy of America counts as "hostile":
Enemy (x,America) \Rightarrow Hostile (x)
West, who is American . . .
American(West)
The country Nono, an enemy of America . . .
Enemy(Nono, America)

Forward chaining algorithm

function $\mathrm{FOL}-\mathrm{FC}-\operatorname{Ask}(K B, \alpha)$ returns a substitution or false repeat until new is empty
new $\leftarrow\}$
for each sentence r in $K B$ do
$\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \leftarrow \operatorname{STANDARDIZE-APART}(r)$
for each θ such that $\left(p_{1} \wedge \ldots \wedge p_{n}\right) \theta=\left(p_{1}^{\prime} \wedge \ldots \wedge p_{n}^{\prime}\right) \theta$
for some $p_{1}^{\prime}, \ldots, p_{n}^{\prime}$ in $K B$
$q^{\prime} \leftarrow \operatorname{Subst}(\theta, q)$
if q^{\prime} is not a renaming of a sentence already in $K B$ or new then do
add q^{\prime} to new
$\phi \leftarrow \operatorname{UNiFY}\left(q^{\prime}, \alpha\right)$
if ϕ is not fail then return ϕ
add new to $K B$
return false

Forward chaining proof

Forward chaining proof

Forward chaining proof

Properties of forward chaining

Sound and complete for first-order definite clauses (proof similar to propositional proof)

Datalog $=$ first-order definite clauses + no functions (e.g., crime KB) FC terminates for Datalog in poly iterations: at most $p \cdot n^{k}$ literals

May not terminate in general if α is not entailed
This is unavoidable: entailment with definite clauses is semidecidable

Efficiency of forward chaining

Simple observation: no need to match a rule on iteration k
if a premise wasn't added on iteration $k-1$
\Rightarrow match each rule whose premise contains a newly added literal
Matching itself can be expensive
Database indexing allows $O(1)$ retrieval of known facts
e.g., query Missile (x) retrieves Missile $\left(M_{1}\right)$

Matching conjunctive premises against known facts is NP-hard
Forward chaining is widely used in deductive databases

Hard matching example

$$
\begin{aligned}
& \operatorname{Diff}(w a, n t) \wedge \text { Diff }(w a, s a) \wedge \\
& \operatorname{Diff}(n t, q) \operatorname{Diff}(n t, s a) \wedge \\
& \operatorname{Diff}(q, n s w) \wedge \operatorname{Diff}(q, s a) \wedge \\
& \text { Diff }(n s w, v) \wedge \operatorname{Diff}(n s w, s a) \wedge \\
& \text { Diff(} v, s a) \Rightarrow \text { Colorable() } \\
& \text { Diff(Red, Blue) Diff(Red, Green) } \\
& \text { Diff(Green, Red) Diff(Green, Blue) } \\
& \text { Diff(Blue, Red) Diff(Blue, Green) }
\end{aligned}
$$

Colorable() is inferred iff the CSP has a solution
CSPs include 3SAT as a special case, hence matching is NP-hard

Backward chaining algorithm

function FOL-BC-Ask(KB, goals, θ) returns a set of substitutions inputs: $K B$, a knowledge base goals, a list of conjuncts forming a query (θ already applied) θ, the current substitution, initially the empty substitution $\}$
local variables: answers, a set of substitutions, initially empty
if goals is empty then return $\{\theta\}$
$q^{\prime} \leftarrow \operatorname{SUBSt}(\theta, \operatorname{First}($ goals $))$
for each sentence r in $K B$
where $\operatorname{StandARDIZE-APART}(r)=\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right)$
and $\theta^{\prime} \leftarrow \operatorname{Unify}\left(q, q^{\prime}\right)$ succeeds
new_goals $\leftarrow\left[p_{1}, \ldots, p_{n} \mid \operatorname{Rest}(\right.$ goals $\left.)\right]$
answers $\leftarrow \operatorname{FOL}-\mathrm{BC}-\operatorname{Ask}\left(K B\right.$, new_goals, $\left.\operatorname{Compose}\left(\theta^{\prime}, \theta\right)\right) \cup$ answers
return answers

Criminal(West)
Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Properties of backward chaining

Depth-first recursive proof search: space is linear in size of proof
Incomplete due to infinite loops
\Rightarrow fix by checking current goal against every goal on stack
Inefficient due to repeated subgoals (both success and failure)
\Rightarrow fix using caching of previous results (extra space!)
Widely used (without improvements!) for logic programming

Logic programming

Sound bite: computation as inference on logical KBs

Logic programming

1. Identify problem
2. Assemble information
3. Tea break
4. Encode information in KB
5. Encode problem instance as facts
6. Ask queries
7. Find false facts

Ordinary programming Identify problem
Assemble information
Figure out solution Program solution
Encode problem instance as data
Apply program to data
Debug procedural errors

Should be easier to debug Capital(NewYork, US) than $x:=x+2$!

Prolog systems

Basis: backward chaining with Horn clauses + bells \& whistles Widely used in Europe, Japan (basis of 5th Generation project) Compilation techniques \Rightarrow approaching a billion LIPS

Program $=$ set of clauses $=$ head $:-$ literal $_{1}, \ldots$ literal $_{n}$.
criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).
Efficient unification by open coding
Efficient retrieval of matching clauses by direct linking
Depth-first, left-to-right backward chaining
Built-in predicates for arithmetic etc., e.g., X is $\mathrm{Y} * \mathrm{Z}+3$
Closed-world assumption ("negation as failure")
e.g., given alive(X) :- not dead(X).
alive(joe) succeeds if dead (joe) fails

Prolog examples

Depth-first search from a start state X :

```
dfs(X) :- goal(X).
dfs(X) :- successor(X,S),dfs(S).
```

No need to loop over S: successor succeeds for each
Appending two lists to produce a third:

```
append([],Y,Y).
append([X|L],Y,[X|Z]) :- append(L,Y,Z).
query: append(A,B,[1,2]) ?
answers: A=[] B=[1,2]
    A=[1] B=[2]
    A=[1,2] B=[]
```


Resolution: brief summary

Full first-order version:

$$
\frac{\ell_{1} \vee \cdots \vee \ell_{k}, \quad m_{1} \vee \cdots \vee m_{n}}{\left(\ell_{1} \vee \cdots \vee \ell_{i-1} \vee \ell_{i+1} \vee \cdots \vee \ell_{k} \vee m_{1} \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_{n}\right) \theta}
$$

where $\operatorname{Unify}\left(\ell_{i}, \neg m_{j}\right)=\theta$.
For example,

$$
\begin{aligned}
& \neg \operatorname{Rich}(x) \vee U n h a p p y(x) \\
& \frac{\operatorname{Rich}(\text { Ken })}{\text { Unhappy }(\text { Ken })}
\end{aligned}
$$

with $\theta=\{x /$ Ken $\}$
Apply resolution steps to $C N F(K B \wedge \neg \alpha)$; complete for FOL

Conversion to CNF

Everyone who loves all animals is loved by someone:

$$
\forall x[\forall y \operatorname{Animal}(y) \Rightarrow \operatorname{Loves}(x, y)] \Rightarrow[\exists y \operatorname{Loves}(y, x)]
$$

1. Eliminate biconditionals and implications

$$
\forall x[\neg \forall y \neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y)] \vee[\exists y \operatorname{Loves}(y, x)]
$$

2. Move \neg inwards: $\neg \forall x, p \equiv \exists x \neg p, \quad \neg \exists x, p \equiv \forall x \neg p$:

$$
\begin{aligned}
& \forall x \quad[\exists y \quad \neg(\neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y))] \vee[\exists y \operatorname{Loves}(y, x)] \\
& \forall x[\exists y \neg \neg \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y)] \vee[\exists y \operatorname{Loves}(y, x)] \\
& \forall x[\exists y \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y)] \vee[\exists y \operatorname{Loves}(y, x)]
\end{aligned}
$$

Conversion to CNF contd.

3. Standardize variables: each quantifier should use a different one

$$
\forall x \quad[\exists y \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y)] \vee[\exists z \operatorname{Loves}(z, x)]
$$

4. Skolemize: a more general form of existential instantiation.

Each existential variable is replaced by a Skolem function of the enclosing universally quantified variables:
$\forall x[\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee \operatorname{Loves}(G(x), x)$
5. Drop universal quantifiers:

$$
[\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee \operatorname{Loves}(G(x), x)
$$

6. Distribute \wedge over \vee :

$$
[\operatorname{Animal}(F(x)) \vee \operatorname{Loves}(G(x), x)] \wedge[\neg \operatorname{Loves}(x, F(x)) \vee \operatorname{Loves}(G(x), x)]
$$

Resolution proof: definite clauses

```
\negAmerican(x) \vee \negWeapon(y) \vee \negSells(x,y,z) \vee \negHostile(z) \vee Criminal(x)
```


