Inference in first-order logic

CHAPTER 9

Universal instantiation (UI)

Every instantiation of a universally quantified sentence is entailed by it:

$$\frac{\forall v \ \alpha}{\text{SUBST}(\{v/g\}, \alpha)}$$

for any variable v and ground term g

```
E.g., \forall x \; King(x) \land Greedy(x) \Rightarrow Evil(x) \; \text{yields} King(John) \land Greedy(John) \Rightarrow Evil(John) \\ King(Richard) \land Greedy(Richard) \Rightarrow Evil(Richard) \\ King(Father(John)) \land Greedy(Father(John)) \Rightarrow Evil(Father(John)):
```

Existential instantiation (EI)

For any sentence α , variable v, and constant symbol k that does not appear elsewhere in the knowledge base:

$$\frac{\exists v \ \alpha}{\text{SUBST}(\{v/k\}, \alpha)}$$

E.g., $\exists x \ Crown(x) \land OnHead(x, John)$ yields

$$Crown(C_1) \wedge OnHead(C_1, John)$$

provided C_1 is a new constant symbol, called a Skolem constant

Another example: from $\exists x \ d(x^y)/dy = x^y$ we obtain

$$d(e^y)/dy = e^y$$

provided e is a new constant symbol

Existential instantiation contd.

UI can be applied several times to **add** new sentences; the new KB is logically equivalent to the old

El can be applied once to **replace** the existential sentence; the new KB is **not** equivalent to the old, but is satisfiable iff the old KB was satisfiable

Inference...

Bob loves someone.

If someone loves someone, then that person loves them back.

Prove:

Someone loves bob.

Suppose the KB contains just the following:

```
\forall x \ King(x) \land Greedy(x) \Rightarrow Evil(x)

King(John)

\forall y \ Greedy(y)

Brother(Richard, John)
```

$$\theta = \{x/John, y/John\} \text{ works}$$

Unify(
$$\alpha, \beta$$
) = θ if $\alpha \theta = \beta \theta$

p	q	$\mid heta \mid$
$\overline{Knows(John,x)}$	Knows(John, Jane)	
Knows(John, x)	Knows(y, OJ)	
Knows(John, x)	Knows(y, Mother(y))	
Knows(John,x)	Knows(x, OJ)	

$$\theta = \{x/John, y/John\}$$
 works

Unify(
$$\alpha, \beta$$
) = θ if $\alpha\theta = \beta\theta$

p	q	$\mid heta \mid$
$\overline{Knows(John,x)}$	[Knows(John, Jane)]	$\{x/Jane\}$
Knows(John, x)	Knows(y, OJ)	
Knows(John, x)	Knows(y, Mother(y))	
Knows(John,x)	Knows(x, OJ)	

$$\theta = \{x/John, y/John\}$$
 works

Unify(
$$\alpha, \beta$$
) = θ if $\alpha \theta = \beta \theta$

p	q	$\mid heta \mid$
$\overline{Knows(John,x)}$	Knows(John, Jane)	$\{x/Jane\}$
Knows(John, x)	Knows(y, OJ)	$\{x/OJ, y/John\}$
Knows(John, x)	Knows(y, Mother(y))	
Knows(John, x)	Knows(x, OJ)	

$$\theta = \{x/John, y/John\}$$
 works

Unify(
$$\alpha, \beta$$
) = θ if $\alpha\theta = \beta\theta$

p	q	$\mid heta \mid$
$\overline{Knows(John,x)}$	Knows(John, Jane)	$\{x/Jane\}$
Knows(John, x)	Knows(y, OJ)	$\{x/OJ, y/John\}$
Knows(John, x)	Knows(y, Mother(y))	$\{y/John, x/Mother(John)\}$
Knows(John,x)	Knows(x, OJ)	

We can get the inference immediately if we can find a substitution θ such that King(x) and Greedy(x) match King(John) and Greedy(y)

$$\theta = \{x/John, y/John\}$$
 works

Unify(
$$\alpha, \beta$$
) = θ if $\alpha\theta = \beta\theta$

p	q	$\mid heta \mid$
$\overline{Knows(John,x)}$	Knows(John, Jane)	$\{x/Jane\}$
Knows(John, x)	Knows(y, OJ)	$\{x/OJ, y/John\}$
Knows(John, x)	Knows(y, Mother(y))	$\{y/John, x/Mother(John)\}$
Knows(John, x)	Knows(x, OJ)	fail

Standardizing apart eliminates overlap of variables, e.g., $Knows(z_{17}, OJ)$

Generalized Modus Ponens (GMP)

$$\frac{p_1', p_2', \dots, p_n', (p_1 \land p_2 \land \dots \land p_n \Rightarrow q)}{q\theta} \quad \text{where } p_i'\theta = p_i\theta \text{ for all } i$$

```
p_1' is King(John) p_1 is King(x) p_2' is Greedy(y) p_2 is Greedy(x) \theta is \{x/John, y/John\} q is Evil(x) q\theta is Evil(John)
```

GMP used with KB of definite clauses (exactly one positive literal) All variables assumed universally quantified

Soundness of GMP

Need to show that

$$p_1', \ldots, p_n', (p_1 \wedge \ldots \wedge p_n \Rightarrow q) \models q\theta$$

provided that $p_i'\theta = p_i\theta$ for all i

Lemma: For any definite clause p, we have $p \models p\theta$ by UI

1.
$$(p_1 \wedge \ldots \wedge p_n \Rightarrow q) \models (p_1 \wedge \ldots \wedge p_n \Rightarrow q)\theta = (p_1 \theta \wedge \ldots \wedge p_n \theta \Rightarrow q\theta)$$

2.
$$p_1', \ldots, p_n' \models p_1' \wedge \ldots \wedge p_n' \models p_1' \theta \wedge \ldots \wedge p_n' \theta$$

3. From 1 and 2, $q\theta$ follows by ordinary Modus Ponens

Example knowledge base

The law says that it is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is American.

Prove that Col. West is a criminal

... it is a crime for an American to sell weapons to hostile nations:

... it is a crime for an American to sell weapons to hostile nations:

 $American(x) \land Weapon(y) \land Sells(x,y,z) \land Hostile(z) \Rightarrow Criminal(x)$

Nono . . . has some missiles

... it is a crime for an American to sell weapons to hostile nations: $American(x) \land Weapon(y) \land Sells(x,y,z) \land Hostile(z) \Rightarrow Criminal(x)$ Nono ... has some missiles, i.e., $\exists \ x \ Owns(Nono,x) \land Missile(x)$: $Owns(Nono,M_1) \text{ and } Missile(M_1)$

... all of its missiles were sold to it by Colonel West

... it is a crime for an American to sell weapons to hostile nations:

 $American(x) \land Weapon(y) \land Sells(x, y, z) \land Hostile(z) \Rightarrow Criminal(x)$

Nono . . . has some missiles, i.e., $\exists \ x \ Owns(Nono,x) \land Missile(x)$:

 $Owns(Nono, M_1)$ and $Missile(M_1)$

... all of its missiles were sold to it by Colonel West

 $\forall x \; Missile(x) \land Owns(Nono, x) \Rightarrow Sells(West, x, Nono)$

Missiles are weapons:

... it is a crime for an American to sell weapons to hostile nations:

 $American(x) \land Weapon(y) \land Sells(x, y, z) \land Hostile(z) \Rightarrow Criminal(x)$

Nono . . . has some missiles, i.e., $\exists x \ Owns(Nono, x) \land Missile(x)$:

 $Owns(Nono, M_1)$ and $Missile(M_1)$

... all of its missiles were sold to it by Colonel West

 $\forall x \; Missile(x) \land Owns(Nono, x) \Rightarrow Sells(West, x, Nono)$

Missiles are weapons:

 $Missile(x) \Rightarrow Weapon(x)$

An enemy of America counts as "hostile":

```
... it is a crime for an American to sell weapons to hostile nations:
   American(x) \land Weapon(y) \land Sells(x, y, z) \land Hostile(z) \Rightarrow Criminal(x)
Nono . . . has some missiles, i.e., \exists x \ Owns(Nono, x) \land Missile(x):
   Owns(Nono, M_1) and Missile(M_1)
... all of its missiles were sold to it by Colonel West
   \forall x \; Missile(x) \land Owns(Nono, x) \Rightarrow Sells(West, x, Nono)
Missiles are weapons:
   Missile(x) \Rightarrow Weapon(x)
An enemy of America counts as "hostile":
   Enemy(x, America) \Rightarrow Hostile(x)
West, who is American . . .
   American(West)
The country Nono, an enemy of America . . .
   Enemy(Nono, America)
```

Forward chaining algorithm

```
function FOL-FC-Ask(KB, \alpha) returns a substitution or false
   repeat until new is empty
       new \leftarrow \{ \}
       for each sentence r in KB do
            (p_1 \wedge \ldots \wedge p_n \Rightarrow q) \leftarrow \text{STANDARDIZE-APART}(r)
            for some p'_1, \ldots, p'_n in KB
                 q' \leftarrow \text{SUBST}(\theta, q)
                if q' is not a renaming of a sentence already in KB or new then do
                      add q' to new
                      \phi \leftarrow \text{UNIFY}(q', \alpha)
                      if \phi is not fail then return \phi
        add new to KB
   return false
```

Forward chaining proof

American(West)

Missile(M1)

Owns(Nono,M1)

Enemy(Nono,America)

Forward chaining proof

Forward chaining proof

Properties of forward chaining

Sound and complete for first-order definite clauses (proof similar to propositional proof)

Datalog = first-order definite clauses + no functions (e.g., crime KB) FC terminates for Datalog in poly iterations: at most $p \cdot n^k$ literals

May not terminate in general if α is not entailed

This is unavoidable: entailment with definite clauses is semidecidable

Efficiency of forward chaining

Simple observation: no need to match a rule on iteration k if a premise wasn't added on iteration k-1

⇒ match each rule whose premise contains a newly added literal

Matching itself can be expensive

Database indexing allows O(1) retrieval of known facts e.g., query Missile(x) retrieves $Missile(M_1)$

Matching conjunctive premises against known facts is NP-hard

Forward chaining is widely used in deductive databases

Hard matching example


```
Diff(wa, nt) \wedge Diff(wa, sa) \wedge \\ Diff(nt, q) Diff(nt, sa) \wedge \\ Diff(q, nsw) \wedge Diff(q, sa) \wedge \\ Diff(nsw, v) \wedge Diff(nsw, sa) \wedge \\ Diff(v, sa) \Rightarrow Colorable() \\ Diff(Red, Blue) \quad Diff(Red, Green) \\ Diff(Green, Red) \quad Diff(Green, Blue) \\ Diff(Blue, Red) \quad Diff(Blue, Green)
```

Colorable() is inferred iff the CSP has a solution CSPs include 3SAT as a special case, hence matching is NP-hard

Backward chaining algorithm

```
function FOL-BC-Ask(KB, goals, \theta) returns a set of substitutions inputs: KB, a knowledge base goals, a list of conjuncts forming a query (\theta already applied) \theta, the current substitution, initially the empty substitution \{\} local variables: answers, a set of substitutions, initially empty if goals is empty then return \{\theta\} q' \leftarrow \text{Subst}(\theta, \text{First}(goals)) for each sentence r in KB where Standardize-Apart(r) = (p_1 \land \ldots \land p_n \Rightarrow q) and \theta' \leftarrow \text{Unify}(q, q') succeeds new\_goals \leftarrow [p_1, \ldots, p_n| \text{Rest}(goals)] answers \leftarrow \text{FOL-BC-Ask}(KB, new\_goals, \text{Compose}(\theta', \theta)) \cup answers return answers
```

Criminal(West)

Properties of backward chaining

Depth-first recursive proof search: space is linear in size of proof

Incomplete due to infinite loops

⇒ fix by checking current goal against every goal on stack

Inefficient due to repeated subgoals (both success and failure)

⇒ fix using caching of previous results (extra space!)

Widely used (without improvements!) for logic programming

Logic programming

Sound bite: computation as inference on logical KBs

Logic programming Ordinary programming

1. Identify problem Identify problem

2. Assemble information Assemble information

3. Tea break Figure out solution

4. Encode information in KB Program solution

5. Encode problem instance as facts Encode problem instance as data

6. Ask queries Apply program to data

7. Find false facts Debug procedural errors

Should be easier to debug Capital(NewYork, US) than x := x + 2!

Prolog systems

```
Basis: backward chaining with Horn clauses + bells & whistles
Widely used in Europe, Japan (basis of 5th Generation project)
Compilation techniques ⇒ approaching a billion LIPS
Program = set of clauses = head :- literal<sub>1</sub>, ... literal<sub>n</sub>.

    criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).

Efficient unification by open coding
Efficient retrieval of matching clauses by direct linking
Depth-first, left-to-right backward chaining
Built-in predicates for arithmetic etc., e.g., X is Y*Z+3
Closed-world assumption ("negation as failure")
```

e.g., given alive(X) :- not dead(X).

alive(joe) succeeds if dead(joe) fails

Prolog examples

Depth-first search from a start state X:

A=[1,2] B=[]

Resolution: brief summary

Full first-order version:

$$\frac{\ell_1 \vee \cdots \vee \ell_k, \quad m_1 \vee \cdots \vee m_n}{(\ell_1 \vee \cdots \vee \ell_{i-1} \vee \ell_{i+1} \vee \cdots \vee \ell_k \vee m_1 \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_n)\theta}$$
 where $\text{UNIFY}(\ell_i, \neg m_i) = \theta$.

For example,

with
$$\theta = \{x/Ken\}$$

Apply resolution steps to $CNF(KB \wedge \neg \alpha)$; complete for FOL

Conversion to CNF

Everyone who loves all animals is loved by someone:

$$\forall x \ [\forall y \ Animal(y) \Rightarrow Loves(x,y)] \Rightarrow [\exists y \ Loves(y,x)]$$

1. Eliminate biconditionals and implications

$$\forall x \ [\neg \forall y \ \neg Animal(y) \lor Loves(x,y)] \lor [\exists y \ Loves(y,x)]$$

2. Move \neg inwards: $\neg \forall x, p \equiv \exists x \neg p, \neg \exists x, p \equiv \forall x \neg p$:

$$\forall x \ [\exists y \ \neg(\neg Animal(y) \lor Loves(x,y))] \lor [\exists y \ Loves(y,x)] \\ \forall x \ [\exists y \ \neg\neg Animal(y) \land \neg Loves(x,y)] \lor [\exists y \ Loves(y,x)] \\ \forall x \ [\exists y \ Animal(y) \land \neg Loves(x,y)] \lor [\exists y \ Loves(y,x)]$$

Conversion to CNF contd.

3. Standardize variables: each quantifier should use a different one

$$\forall x \ [\exists y \ Animal(y) \land \neg Loves(x,y)] \lor [\exists z \ Loves(z,x)]$$

4. Skolemize: a more general form of existential instantiation.

Each existential variable is replaced by a Skolem function of the enclosing universally quantified variables:

$$\forall x \ [Animal(F(x)) \land \neg Loves(x, F(x))] \lor Loves(G(x), x)$$

5. Drop universal quantifiers:

$$[Animal(F(x)) \land \neg Loves(x, F(x))] \lor Loves(G(x), x)$$

6. Distribute ∧ over ∨:

$$[Animal(F(x)) \lor Loves(G(x), x)] \land [\neg Loves(x, F(x)) \lor Loves(G(x), x)]$$

Resolution proof: definite clauses

