FIRST-ORDER LOGIC

Chapter 8

(Slides borrowed from Stuart Russel: http://aima.eecs.berkeley.edu/slides-tex/)

First-order logic

Whereas propositional logic assumes world contains **facts**, first-order logic (like natural language) assumes the world contains

. . .

- Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games, wars, centuries . . .
- Relations: red, round, bogus, prime, multistoried . . ., brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, . . .
- Functions: father of, best friend, third inning of, one more than, end of

Logics in general

Language	Ontological	Epistemological
	Commitment	Commitment
Propositional logic	facts	true/false/unknown
First-order logic	facts, objects, relations	true/false/unknown
Temporal logic	facts, objects, relations, times	true/false/unknown
Probability theory	facts	degree of belief
Fuzzy logic	facts $+$ degree of truth	known interval value

Syntax of FOL: Basic elements

ConstantsKingJohn, 2, UCB, ...PredicatesBrother, >, ...FunctionsSqrt, LeftLegOf, ...Variablesx, y, a, b, ...Connectives $\land \lor \neg \Rightarrow \Leftrightarrow$ Equality=Quantifiers $\forall \exists$

Atomic sentences

Atomic sentence = $predicate(term_1, ..., term_n)$ or $term_1 = term_2$

> Term = $function(term_1, ..., term_n)$ or constant or variable

Complex sentences

Complex sentences are made from atomic sentences using connectives

 $\neg S, \quad S_1 \wedge S_2, \quad S_1 \vee S_2, \quad S_1 \Rightarrow S_2, \quad S_1 \Leftrightarrow S_2$

E.g. $Sibling(KingJohn, Richard) \Rightarrow Sibling(Richard, KingJohn)$ > $(1, 2) \lor \leq (1, 2)$ > $(1, 2) \land \neg > (1, 2)$

Truth in first-order logic

Sentences are true with respect to a model and an interpretation

Model contains ≥ 1 objects (domain elements) and relations among them

Interpretation specifies referents for constant symbols \rightarrow objects predicate symbols \rightarrow relations function symbols \rightarrow functional relations

An atomic sentence $predicate(term_1, \ldots, term_n)$ is true iff the objects referred to by $term_1, \ldots, term_n$ are in the relation referred to by predicate

Models for FOL: Example

Truth example

Consider the interpretation in which $Richard \rightarrow$ Richard the Lionheart $John \rightarrow$ the evil King John $Brother \rightarrow$ the brotherhood relation

Under this interpretation, Brother(Richard, John) is true just in case Richard the Lionheart and the evil King John are in the brotherhood relation in the model

Models for FOL: Lots!

Entailment in propositional logic can be computed by enumerating models

We **can** enumerate the FOL models for a given KB vocabulary:

For each number of domain elements n from 1 to ∞ For each k-ary predicate P_k in the vocabulary For each possible k-ary relation on n objects For each constant symbol C in the vocabulary For each choice of referent for C from n objects ...

Computing entailment by enumerating FOL models is not easy!

Universal quantification

 $\forall \langle variables \rangle \ \langle sentence \rangle$

Everyone at JMU is smart: $\forall x \ At(x, JMU) \Rightarrow Smart(x)$

 $\forall x \ P$ is true in a model m iff P is true with x being each possible object in the model

 ${\bf Roughly}$ speaking, equivalent to the conjunction of instantiations of P

 $\begin{array}{l} (At(KingJohn, JMU) \Rightarrow Smart(KingJohn)) \\ \land \ (At(Richard, JMU) \Rightarrow Smart(Richard)) \\ \land \ (At(JMU, JMU) \Rightarrow Smart(JMU)) \\ \land \ \dots \end{array}$

Existential quantification

 $\exists \langle variables \rangle \ \langle sentence \rangle$

Someone at WVU is smart: $\exists x \ At(x, WVU) \land Smart(x)$

 $\exists x \ P$ is true in a model m iff P is true with x being some possible object in the model

 ${\bf Roughly}$ speaking, equivalent to the disjunction of instantiations of P

```
\begin{array}{l} (At(KingJohn,WVU) \wedge Smart(KingJohn)) \\ \lor \ (At(Richard,WVU) \wedge Smart(Richard)) \\ \lor \ (At(WVU,WVU) \wedge Smart(WVU)) \\ \lor \ \ldots \end{array}
```

Properties of quantifiers

- $\forall x \ \forall y$ is the same as $\forall y \ \forall x$
- $\exists x \ \exists y \ \text{ is the same as } \exists y \ \exists x$
- $\exists x \ \forall y$ is **not** the same as $\forall y \ \exists x$

$\exists x \ \forall y \ Loves(x,y)$

"There is a person who loves everyone in the world"

$\forall y \exists x \ Loves(x,y)$

"Everyone in the world is loved by at least one person"

Quantifier duality: each can be expressed using the other

- $\forall x \ Likes(x, IceCream) \qquad \neg \exists x \ \neg Likes(x, IceCream)$
- $\exists x \ Likes(x, Broccoli) \qquad \neg \forall x \ \neg Likes(x, Broccoli)$

Exercises

Brothers are siblings.

"Sibling" is symmetric.

Alice likes everyone except Bob.

There is no largest integer.

One's father is always older than one's son.

Exercises

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y).$

Equality

 $term_1 = term_2$ is true under a given interpretation if and only if $term_1$ and $term_2$ refer to the same object

- E.g., 1 = 2 and $\forall x \times (Sqrt(x), Sqrt(x)) = x$ are satisfiable 2 = 2 is valid
- E.g., definition of (full) Sibling in terms of Parent: $\forall x, y \ Sibling(x, y) \Leftrightarrow [\neg(x = y) \land \exists m, f \neg(m = f) \land$ $Parent(m, x) \land Parent(f, x) \land Parent(m, y) \land Parent(f, y)]$

Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at t = 5:

Tell(KB, Percept([Smell, Breeze, None], 5)) $Ask(KB, \exists a \ Action(a, 5))$

I.e., does KB entail any particular actions at t = 5?

Answer: *Yes*, $\{a/Shoot\} \leftarrow$ substitution (binding list)

Given a sentence S and a substitution σ , $S\sigma$ denotes the result of plugging σ into S; e.g., S = Smarter(x, y) $\sigma = \{x/Hillary, y/Bill\}$ $S\sigma = Smarter(Hillary, Bill)$

Ask(KB,S) returns some/all σ such that $KB \models S\sigma$

Knowledge base for the wumpus world

"Perception"

 $\begin{array}{ll} \forall \, b, g, t \; \; Percept([Smell, b, g], t) \; \Rightarrow \; Smelt(t) \\ \forall \, s, b, t \; \; Percept([s, b, Glitter], t) \; \Rightarrow \; AtGold(t) \end{array}$

 $\textbf{Reflex: } \forall t \ AtGold(t) \ \Rightarrow \ Action(Grab,t)$

Reflex with internal state: do we have the gold already? $\forall t \ AtGold(t) \land \neg Holding(Gold, t) \Rightarrow Action(Grab, t)$

Holding(Gold, t) cannot be observed \Rightarrow keeping track of change is essential

Deducing hidden properties

Properties of locations:

 $\begin{array}{ll} \forall x,t \ At(Agent,x,t) \land Smelt(t) \Rightarrow Smelly(x) \\ \forall x,t \ At(Agent,x,t) \land Breeze(t) \Rightarrow Breezy(x) \end{array}$

Squares are breezy near a pit:

Diagnostic rule—infer cause from effect $\forall y \ Breezy(y) \Rightarrow \exists x \ Pit(x) \land Adjacent(x, y)$

Neither of these is complete—e.g., the causal rule doesn't say whether squares far away from pits can be breezy

Definition for the *Breezy* predicate:

 $\forall y \ Breezy(y) \Leftrightarrow [\exists x \ Pit(x) \land Adjacent(x,y)]$

Keeping track of change

Facts hold in situations, rather than eternally E.g., Holding(Gold, Now) rather than just Holding(Gold)

Situation calculus is one way to represent change in FOL: Adds a situation argument to each non-eternal predicate E.g., Now in Holding(Gold, Now) denotes a situation

Situations are connected by the Result function Result(a, s) is the situation that results from doing a in s

Describing actions I

"Effect" axiom—describe changes due to action $\forall s \ AtGold(s) \Rightarrow Holding(Gold, Result(Grab, s))$

"Frame" axiom—describe **non-changes** due to action $\forall s \; HaveArrow(s) \Rightarrow HaveArrow(Result(Grab, s))$

Frame problem: find an elegant way to handle non-change

- (a) representation—avoid frame axioms
- (b) inference—avoid repeated "copy-overs" to keep track of state

Qualification problem: true descriptions of real actions require endless caveats what if gold is slippery or nailed down or . . .

Ramification problem: real actions have many secondary consequences what about the dust on the gold, wear and tear on gloves, ...

Describing actions II

Successor-state axioms solve the representational frame problem

Each axiom is "about" a **predicate** (not an action per se):

P true afterwards \Leftrightarrow [an action made P true \lor P true already and no action made P false]

For holding the gold:

 $\begin{array}{l} \forall \, a,s \;\; Holding(Gold,Result(a,s)) \Leftrightarrow \\ [(a = Grab \wedge AtGold(s)) \\ \lor \; (Holding(Gold,s) \wedge a \neq Release)] \end{array}$

Making plans

Initial condition in KB: $At(Agent, [1, 1], S_0)$ $At(Gold, [1, 2], S_0)$

Query: $Ask(KB, \exists s \ Holding(Gold, s))$ i.e., in what situation will I be holding the gold?

Answer: $\{s/Result(Grab, Result(Forward, S_0))\}$

i.e., go forward and then grab the gold

This assumes that the agent is interested in plans starting at S_0 and that S_0 is the only situation described in the KB

Making plans: A better way

Represent plans as action sequences $[a_1, a_2, \ldots, a_n]$

PlanResult(p,s) is the result of executing p in s

Then the query $Ask(KB, \exists p \ Holding(Gold, PlanResult(p, S_0)))$ has the solution $\{p/[Forward, Grab]\}$

Definition of PlanResult in terms of Result: $\forall s \ PlanResult([], s) = s$ $\forall a, p, s \ PlanResult([a|p], s) = PlanResult(p, Result(a, s))$

Planning systems are special-purpose reasoners designed to do this type of inference more efficiently than a general-purpose reasoner

Summary

First-order logic:

- objects and relations are semantic primitives
- syntax: constants, functions, predicates, equality, quantifiers

Increased expressive power: sufficient to define wumpus world

Situation calculus:

- conventions for describing actions and change in FOL
- can formulate planning as inference on a situation calculus KB