PID Control

Nathan Sprague

Example System. ..

Figure 1: Train

» Goal: move the locomotive to the goal location
> ¢(t) is the error at time t

Proportional Control

» Controller function:
u(t) = Kpe(t)

» u(t) - control signal at time t
> K, - gain

Python pseudocode:

def p_controller(train, g, K_P):
while True:
e = g - train.x
u=KP=x*xe
train.throttle(u)

(Disappointing) Result:

e(t)(meters)

e(t) (meters)

1.0

0.5

0.0

—-0.5 |-

—1.0

1.0

0.5

0.0

—0.5

-1.0

T

t (seconds)

| Reaches goal.
Starts 1m from
the goal. 1
L L L
0 1 2 3 5
t (seconds)
Kp =100.0
T T T
f I I
0 1 2 3 5

Problems

> Real systems have:
» momentum
» friction/drag
» outside forces (e.g. gravity)

PD Control

» Fix: Incorporate rate of change in the error:

> If error is going down quickly, ease off on the control signal
> If error is going up quickly, increase the control signal

derivative term

de(t)
K
T

In practice, we will approximate the derivative. ..

de(t) - e(t) — e(t — At)

dt At

Python pseudocode:

def pd_controller(train, g, K_P, K_D):

e_prev = g - train.x

while True:
e = g - train.x
dedt = (e - e_prev) / train.dt
u=KP=x*xe + KD * dedt
train.throttle(u)
e_prev = e

PD Result

Kp =50.0
1.0 ; . . .
— Kp=5

0.5 |- — Kp=20|]
~ — Kp=60
=
S
S 00— - X D™ - - — =
\g \/
T 05|

~1.0 | | | |

0 1 2 3 4

t (seconds)

Figure 3: PD controller result

What about this situation?

Figure 4. Train on a Hill

What about this situation?

Kp =50.0,Kp =20

1.0 T T T T

0.5 | u
R
3 I
S 00/ — — — — — — = = - — — — - - — 2 _ — —
> /
T

—05 | Droop .

—1.0 L L L L

0 1 2 3 4
t (seconds)

Figure 5: Droop

PID Control

» Next idea: Add a term that is proportional to the amount of
error seen in the past

» If there has been a lot of error in the past, increase control
signal

integral term

de(t)
H—!

u(t) = Kpe(t) + o

Approximating Integral

In practice, we will approximate the integral as a summation. ..

of steps before time ¢

Error at time step 4

PID in Python

def pid_controller(train, g, K_P, K_I, K. D):

e_prev = g - train.x
e_sum = 0 # accumulator for integral term
while True:
e = g - train.x
e_sum = e_sum + e * train.dt
dedt = (e - e_prev) / train.dt
u=KP *xe + K I * e_sum + K_D * dedt
train.throttle(u)
e_prev = e

PID Result

Kp =50.0,K; =40,Kp =20

1.0 T T T T
— slope = 5°

— slope = 10°

— slope = 15° H

0.5 |
@
=
O
T
£
T
—0.5 | No droop! i
—~1.0 I I I I
0 1 2 3 4

t (seconds)

Figure 6: Good

