
PID Control

Nathan Sprague



Example System. . .

x(t) g(t)

e(t)

Figure 1: Train

I Goal: move the locomotive to the goal location
I e(t) is the error at time t

e(t) = g(t) − x(t)



Proportional Control

I Controller function:

u(t) = Kpe(t)

I u(t) - control signal at time t
I Kp - gain



Python pseudocode:

def p_controller(train, g, K_P):
while True:

e = g - train.x
u = K_P * e
train.throttle(u)



(Disappointing) Result:

0 1 2 3 4 5

t (seconds)

−1.0

−0.5

0.0

0.5

1.0

e(
t)
(m

et
er

s)

Starts 1m from
the goal.

Reaches goal.

Overshoot!

KP = 10.0

0 1 2 3 4 5

t (seconds)

−1.0

−0.5

0.0

0.5

1.0

e(
t)

(m
et

er
s)

KP = 100.0

Figure 2: Proportional controller result



Problems

I Real systems have:
I momentum
I friction/drag
I outside forces (e.g. gravity)



PD Control

I Fix: Incorporate rate of change in the error:
I If error is going down quickly, ease off on the control signal
I If error is going up quickly, increase the control signal

u(t) = Kpe(t) + Kd
de(t)

dt

derivative term

In practice, we will approximate the derivative. . .

de(t)
dt ≈ e(t) − e(t − ∆t)

∆t



Python pseudocode:

def pd_controller(train, g, K_P, K_D):
e_prev = g - train.x
while True:

e = g - train.x
dedt = (e - e_prev) / train.dt
u = K_P * e + K_D * dedt
train.throttle(u)
e_prev = e



PD Result

0 1 2 3 4 5

t (seconds)

−1.0

−0.5

0.0

0.5

1.0

e(
t)
(m

et
er

s)

KP = 50.0

KD = 5

KD = 20

KD = 60

Figure 3: PD controller result



What about this situation?

x(t)
g(t)

e(t)

Figure 4: Train on a Hill



What about this situation?

0 1 2 3 4 5

t (seconds)

−1.0

−0.5

0.0

0.5

1.0

e(
t)
(m

et
er

s)

“Droop”

KP = 50.0,KD = 20

Figure 5: Droop



PID Control

I Next idea: Add a term that is proportional to the amount of
error seen in the past

I If there has been a lot of error in the past, increase control
signal

u(t) = KPe(t) + KI

∫ t

0
e(τ)dτ

integral term

+ KD
de(t)

dt



Approximating Integral

In practice, we will approximate the integral as a summation. . .



PID in Python

def pid_controller(train, g, K_P, K_I, K_D):

e_prev = g - train.x
e_sum = 0 # accumulator for integral term
while True:

e = g - train.x
e_sum = e_sum + e * train.dt
dedt = (e - e_prev) / train.dt
u = K_P * e + K_I * e_sum + K_D * dedt
train.throttle(u)
e_prev = e



PID Result

0 1 2 3 4 5

t (seconds)

−1.0

−0.5

0.0

0.5

1.0

e(
t)
(m

et
er

s)

No droop!

KP = 50.0,KI = 40,KD = 20

slope = 5o

slope = 10o

slope = 15o

Figure 6: Good


