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Probabilistic State Representations: Continuous

Probabilistic Robotics. Thrun, Burgard, Fox,
2005

Figure 7.6 Application of the Kalman filter algorithm to mobile robot localization.
All densities are represented by unimodal Gaussians.
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Combining Evidence

Imagine two independent measurements of some unknown
quantity:

m x; with variance o2

m X with variance o2

How should we combine these measumrents?

We can take a weighted average:
B X = wixg + woxo (where w1 + wp = 1)
What should the weights be???
m We want to find weights that minimize variance (uncertainty)
in the estimate:
» 0% = E[(% - E[8])?]



Combining Evidence — Solution

(Derivation not shown...)
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Updating an Existing Estimate

Let's reinterpret x; to be the old state estimate and o2 to be the
variance in that estimate. Now x» represents a new sensor reading.
After some algebra...
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Vector-Valued State

m Kalman filter generalizes this to multivariate data.
m Typically the two sources of evidence are coming from:

m Sensor
m System Model

m We may also be combining evidence from multiple sensors
m Sensor fusion



Linear System Models

m State can include information other than position. E.g.
velocity.

m Linear model of an object moving with a fixed velocity in 2d:

B Xip1 = X¢ + Xpdt
B Vi1 =y + yedt
B Xii1 = X
B Y1 = Ye

m dt is time.

m Xx; is velocity along the x axis.



Linear System Model in Matrix Form

This is equivalent to the last slide:

Xt
Xt = iz
YVt
1 0 d 0
01 0 dt
Xt+]_ = 0 O 1 0 Xt
0 0 0 1



Kalman Filter

m Assumes:

m Linear state dynamics

m Linear sensor model

m Normally distributed noise in the state dynamics
m Normally distributed noise in the sensor model

m State Transition Model:
Xy =Fx; 1+ Bugg +we g
m w~ N(0,Q) (Normal distribution with mean 0 and
covariance Q)
m Sensor Model:
m z; = Hx; + vy

s v~ N(0,R)



Kalman Filter in One Slide

m Predict:
Project the state forward:

X; = FX¢—1+ Buy_3
Project the covariance of the state estimate forward:
P, =FP, 1FT +Q

m Correct:
Compute the Kalman gain:

K:=P;HT(HP;HT +R)™!
Update the estimate with the measurement:
Xt = X, + Ke(ze — HX;)
Update the estimate covariance:

Pt — Pt_ - KtHPt_



Extended Kalman Filter

m What if the state dynamics and/or sensor model are NOT
linear?
m State Transition Model:
B Xy = f(xt—la Ut—l) +wi_q
m Sensor Model:
m z; = h(x;) + vt



Jacobian

The Jacobian is the generalization of the derivative for
vector-valued functions:
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tex borrowed from Wikipedia


https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant

Extended Kalman Filter

m As long as f and h are differentiable, we can still use the
(Extended) Kalman filter.

m Basically, we just replace the state transition and sensor
update matrices with the corresponding Jacobians.



