
CS354

Nathan Sprague

April 24, 2019



Probabilistic State Representations: Continuous

Probabilistic Robotics. Thrun, Burgard, Fox,
2005



Combining Evidence

Imagine two independent measurements of some unknown
quantity:

x1 with variance σ2
1

x2 with variance σ2
2

How should we combine these measumrents?

We can take a weighted average:

x̂ = ω1x1 + ω2x2 (where ω1 + ω2 = 1)

What should the weights be???

We want to find weights that minimize variance (uncertainty)
in the estimate:

σ2 = E [(x̂ − E [x̂ ])2]



Combining Evidence

Imagine two independent measurements of some unknown
quantity:

x1 with variance σ2
1

x2 with variance σ2
2

How should we combine these measumrents?

We can take a weighted average:

x̂ = ω1x1 + ω2x2 (where ω1 + ω2 = 1)

What should the weights be???

We want to find weights that minimize variance (uncertainty)
in the estimate:

σ2 = E [(x̂ − E [x̂ ])2]



Combining Evidence

Imagine two independent measurements of some unknown
quantity:

x1 with variance σ2
1

x2 with variance σ2
2

How should we combine these measumrents?

We can take a weighted average:

x̂ = ω1x1 + ω2x2 (where ω1 + ω2 = 1)

What should the weights be???

We want to find weights that minimize variance (uncertainty)
in the estimate:

σ2 = E [(x̂ − E [x̂ ])2]



Combining Evidence – Solution

(Derivation not shown...)

x̂ =
σ22x1 + σ21x2
σ21 + σ22

σ2 =
σ21σ

2
2

σ21 + σ22



Updating an Existing Estimate

Let’s reinterpret x1 to be the old state estimate and σ21 to be the
variance in that estimate. Now x2 represents a new sensor reading.
After some algebra...

x̂ = x1 +
σ21(x2 − x1)

σ21 + σ22

σ2 = σ21 −
σ21σ

2
1

σ21 + σ22

Let k =
σ2
1

σ2
1+σ

2
2
, these become...

x̂ = x1 + k(x2 − x1)

σ2 = σ21 − kσ21



Vector-Valued State

Kalman filter generalizes this to multivariate data.

Typically the two sources of evidence are coming from:

Sensor
System Model

We may also be combining evidence from multiple sensors

Sensor fusion



Linear System Models

State can include information other than position. E.g.
velocity.

Linear model of an object moving with a fixed velocity in 2d:

xt+1 = xt + ẋtdt
yt+1 = yt + ẏtdt
ẋt+1 = ẋt
ẏt+1 = ẏt

dt is time.

ẋt is velocity along the x axis.



Linear System Model in Matrix Form

This is equivalent to the last slide:

xt =


xt
yt
ẋt
ẏt



xt+1 =


1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1

 xt



Kalman Filter

Assumes:

Linear state dynamics
Linear sensor model
Normally distributed noise in the state dynamics
Normally distributed noise in the sensor model

State Transition Model:

xt = Fxt−1 + But−1 + wt−1

w ∼ N (0,Q) (Normal distribution with mean 0 and
covariance Q)

Sensor Model:

zt = Hxt + vt
v ∼ N (0,R)



Kalman Filter in One Slide

Predict:
Project the state forward:

x̂−t = F x̂t−1 + But−1

Project the covariance of the state estimate forward:

P−
t = FPt−1F

T + Q

Correct:
Compute the Kalman gain:

Kt = P−
t H

T (HP−
t H

T + R)−1

Update the estimate with the measurement:

x̂t = x̂−t + Kt(zt − H x̂−t )

Update the estimate covariance:

Pt = P−
t −KtHP−

t



Extended Kalman Filter

What if the state dynamics and/or sensor model are NOT
linear?

State Transition Model:

xt = f (xt−1,ut−1) + wt−1

Sensor Model:

zt = h(xt) + vt



Jacobian

The Jacobian is the generalization of the derivative for
vector-valued functions:

J = df
dx =

[
∂f

∂x1
· · · ∂f

∂xn

]
=


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn


Jij = ∂fi

∂xj

tex borrowed from Wikipedia

https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant


Extended Kalman Filter

As long as f and h are differentiable, we can still use the
(Extended) Kalman filter.

Basically, we just replace the state transition and sensor
update matrices with the corresponding Jacobians.


