CS354

Nathan Sprague

March 25, 2014

Grid Based Representations

- Easy to work with, not space efficient
- Naive 3d grid representation of a 5m × 5m room at 1cm accuracy:

- 500 × 500 × 500 = 125,000,000 cells
- Quadtree is a more space efficient alternative...

Grid Based Representations

- Easy to work with, not space efficient
- Naive 3d grid representation of a 5m × 5m room at 1cm accuracy:
 - $500 \times 500 \times 500 = 125,000,000$ cells
- Quadtree is a more space efficient alternative...

Octree is the 3d generalization

http://en.wikipedia.org/wiki/File:Octree2.svg, http://creativecommons.org/licenses/by-sa/3.0/

Topological Maps

Example

<□ > < @ > < E > < E > E のQ @

"A configuration q ∈ C of the robot A is a specification of the state of A with respect to a fixed frame F_w" (our book)

• Turtlebot configuration: $\mathbf{q} = [x, y, \Theta]$.

- "A configuration $\mathbf{q} \in C$ of the robot \mathcal{A} is a specification of the state of \mathcal{A} with respect to a fixed frame F_w " (our book)
- Turtlebot configuration: $\mathbf{q} = [x, y, \Theta]$.
- A **C-Obstacle** *CB_i* is defined as:
 - $\mathcal{C}B_i = \{\mathbf{q} \in \mathcal{C} \mid \mathcal{A}(\mathbf{q}) \cap \mathcal{B}_i \neq \emptyset\}$
 - **\square** \mathcal{B}_i is the space occupied by obstacle *i*.
 - $\mathcal{A}(\mathbf{q})$ is the space occupied by the robot in configuration \mathbf{q} .

- "A configuration q ∈ C of the robot A is a specification of the state of A with respect to a fixed frame F_w" (our book)
- Turtlebot configuration: $\mathbf{q} = [x, y, \Theta]$.
- A **C-Obstacle** *CB_i* is defined as:
 - $\mathcal{C}B_i = \{\mathbf{q} \in \mathcal{C} \mid \mathcal{A}(\mathbf{q}) \cap \mathcal{B}_i \neq \emptyset\}$
 - **\square** \mathcal{B}_i is the space occupied by obstacle *i*.
 - $\mathcal{A}(\mathbf{q})$ is the space occupied by the robot in configuration \mathbf{q} .

• $C_{free} = \{ \mathbf{q} \in C \mid \mathcal{A}(\mathbf{q}) \cap (\cup_i \mathcal{B}_i) = \emptyset \}$ • $C_{obs} = \overline{C_{free}}$

Draw C_{free} for this robot:

Robot arm with a single rotational joint and a single prismatic joint

- I prismatic joint extension in meters
- Θ angle of rotational joint ($\Theta \approx \pi/4$ in the image)

- Holonomic vs. Non-holonomic constraints
- Point robot assumption and object dilation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?