

Discrete State Search for Robotics

CS354
Nathan Sprague

Generic Graph Search Algorithm
(without weighted edges)

Procedure GraphSearch(start, goal)
 OPEN := {start}
 CLOSED := {}
 found := False
 while (OPEN not empty) and (not found)
 Select a node n from OPEN.
 OPEN := OPEN – {n}
 CLOSED := CLOSED U {n}
 if n goal then
 found := True
 else
 Let M be the set of all nodes
 directly accessible from n which
 are not in CLOSED.
 OPEN := OPEN U M

∈

Depends on the
problem

Determines
the order that
states are
searched.

From our book:

Depth First Search

Procedure DFS(start, goal)
 OPEN := An empty stack.
 OPEN.push(start)
 CLOSED := {}
 found := False
 while (OPEN not empty) and (not found)
 n = OPEN.pop()
 CLOSED := CLOSED U {n}
 if n goal then
 found := True
 else
 for each state m accessible from n
 if m CLOSED and m OPEN
 OPEN.push(m)

∈

Depends on the
problem

Determines
the order that
states are
searched.

∉ ∉

Depth First Search

Procedure DFS(start, goal)
 OPEN := An empty stack.
 OPEN.push(start)
 CLOSED := {}
 found := False
 while (OPEN not empty) and (not found)
 n = OPEN.pop()
 CLOSED := CLOSED U {n}
 if n goal then
 found := True
 else
 for each state m accessible from n
 if m CLOSED and m OPEN
 OPEN.push(m)

∈

∉ ∉

S

A

C

B
E

D F

1

2

1
3

2
1

1

1
G2

“Correct” version of Figure 6.1

Chosen Open Closed
– S –
S A S
A B, C, D A, S
D B, C, F A, S, D
F B, C, G A, S, D, F
G B, C A, S, D, G, F

Breadth First Search

Procedure BFS(start, goal)
 OPEN := An empty Queue.
 OPEN.enqueue(start)
 CLOSED := {}
 found := False
 while (OPEN not empty) and (not found)
 n = OPEN.dequeue()
 CLOSED := CLOSED U {n}
 if n goal then
 found := True
 else
 for each state m accessible from n
 if m CLOSED and m OPEN
 OPEN.enqueue(m)

∈

Depends on the
problem

Determines
the order that
states are
searched.

∉ ∉

Search Nodes

Type Node
 State state
 Node parent_node
 Number path_cost

Function CreateNode(State state, Node parent,
 number step_cost)
 Return a node with
 state = state
 parent_node = parent
 path_cost = step_cost + parent.path_cost

Generic Graph Search With Nodes

Function GraphSearch(start, goal)
 OPEN := { CreateNode(start, NONE, 0) }
 CLOSED := {}
 found := False
 while (OPEN not empty) and (not found)
 Select a node n from OPEN.
 OPEN := OPEN – {n}
 CLOSED := CLOSED U {n.state}
 if n.state goal then
 found := True
 else
 Let M be the set of all nodes
 directly accessible from n which
 are not in CLOSED.
 OPEN := OPEN U M
 if found
 return a plan created by following
 parent links back from n
 else
 return FAILURE

∈

Depends on the
problem

Determines
the order that
states are
searched.

Djikstra's Algorithm

Procedure Djikstra(start, goal)
 OPEN := An empty Priority Queue.
 n = CreateNode(start, NONE, 0)
 OPEN.enqueue(n, 0)
 CLOSED := {}
 found := False
 while (OPEN not empty) and (not found)
 n = OPEN.dequeue()
 CLOSED := CLOSED U {n.state}
 if n.state goal then
 found := True
 else
 for each state m accessible from n
 if m CLOSED and m Any Node in OPEN
 m_node = CreateNode(m, n, Cost of n->m)
 OPEN.enqueue(m_node, m_node.path_cost)

∈

∉ ∉

(Missing detail: If m is already in a node in OPEN, then that node should be replaced if
m_node has a lower cost.)

Djikstra's Algorithm

Procedure Djikstra(start, goal)
 OPEN := An empty Priority Queue.
 n = CreateNode(start, NONE, 0)
 OPEN.enqueue(n, 0)
 CLOSED := {}
 found := False
 while (OPEN not empty) and (not found)
 n = OPEN.dequeue()
 CLOSED := CLOSED U {n.state}
 if n.state goal then
 found := True
 else
 for each state m accessible from n
 if m CLOSED and m Any Node in OPEN
 m_node = CreateNode(m, n, Cost of n->m)
 OPEN.enqueue(m_node, m_node.path_cost)

∈

∉ ∉

S

A

C

B
E

D F

1

2

1
3

2
1

1

1
G2

A*

● Exactly like Djikstra's, Except, priority is calculated as:

f(n) = g(n) + h(n)

 g(n) = Total path cost to that node

 h(n) = Estimated cost to the goal

● As long as h(n) doesn't overestimate, A* is guaranteed to find
an optimal path.

Exercise

A* Heuristic
h(n) = Minimum number of edges
between n and the goal.

For example:
 h(C) = 2
 h(G) = 6

Since all weights are at least 1, this is
guaranteed not to overestimate the
path cost.

Exercise

● Fill out Chosen/Open/Closed tables (like figures 6.1-6.3) and the final path for:

– DFS: start=I, goal=A

– BFS: start=I, goal=A

– Djikstra: start=E, goal=A

– A*: start=E, goal=A

● All “ties” should be broken by alphabetical order: State 'A' is selected before
state 'B'

● For DFS and BFS, the Open column should be formatted as follows:

 (state, parent), e.g. ('A', 'B')

● For Djikstra, the Open column should be formatted as follows:

 (state, parent, path_cost)

● For A*, the Open column should be formatted as follows:

 (state, parent, path_cost, f(n))

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

