
Subversion Overview

(Based on Chapter 2 of Version Control With
Subversion [http://svnbook.red-bean.com/])

(Compiled from r4615M)

Original authors:
Ben Collins-Sussman
Brian W. Fitzpatrick

C. Michael Pilato
Modified by:

Nathan Sprague

http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/

Subversion Overview: (Based on Chapter 2 of Version Control With Subver-
sion [http://svnbook.red-bean.com/]): (Compiled from r4615M)
by Ben Collins-Sussman, Brian W. Fitzpatrick, C. Michael Pilato, and Nathan Sprague
Copyright © 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 Ben Collins-Sussman, Brian W. Fitzpatrick,
C. Michael Pilato

This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://creativecommons.org/licenses/by/2.0/

iii

Table of Contents
1. Basic Usage .. 1

About this Document .. 1
Introduction ... 1
Help! ... 1
Getting Data into Your Repository .. 2

Importing Files and Directories .. 2
Creating a Working Copy .. 3
Basic Work Cycle .. 4

Update Your Working Copy .. 4
Make Your Changes ... 4
Review Your Changes .. 6
Commit Your Changes .. 9

Summary .. 10

1

Chapter 1. Basic Usage

About this Document
This is a hastily trimmed-down version of Chapter 2 of the the book Version Control With Subversion. The original book can be
downloaded from: http://svnbook.red-bean.com/. Wherever you see ???, the original chapter contained a reference to material from
another chapter of the book.

Introduction
This chapter will not provide exhaustive coverage of all of Subversion's commands—rather, it's a conversational introduction to the
most common Subversion tasks that you'll encounter. This chapter assumes that you've read and understood ??? and are familiar with
the general model of Subversion. For a complete reference of all commands, see ???.

Help!

It goes without saying that this book exists to be a source of information and assistance for Subversion users new and old. Conve-
niently, though, the Subversion command-line is self-documenting, alleviating the need to grab a book off the shelf (wooden, virtual,
or otherwise). The svn help command is your gateway to that built-in documentation:

$ svn help
Subversion command-line client, version 1.7.0.
Type 'svn help <subcommand>' for help on a specific subcommand.
Type 'svn --version' to see the program version and RA modules
 or 'svn --version --quiet' to see just the version number.

Most subcommands take file and/or directory arguments, recursing
on the directories. If no arguments are supplied to such a
command, it recurses on the current directory (inclusive) by default.

Available subcommands:
 add
 blame (praise, annotate, ann)
 cat
…

As described in the previous output, you can ask for help on a particular subcommand by running svn help SUBCOMMAND.
Subversion will respond with the full usage message for that subcommand, including its syntax, options, and behavior:

$ svn help help
help (?, h): Describe the usage of this program or its subcommands.
usage: help [SUBCOMMAND...]

Global options:
 --username ARG : specify a username ARG
 --password ARG : specify a password ARG
…

http://svnbook.red-bean.com/

Basic Usage

2

Options and Switches and Flags, Oh My!

The Subversion command-line client has numerous command modifiers. Some folks refer to such things as “switches” or
“flags”—in this book, we'll call them “options”. You'll find the options supported by a given svn subcommand, plus a set
of options which are globally supported by all subcommands, listed near the bottom of the built-in usage message for that
subcommand.

Subversion's options have two distinct forms: short options are a single hyphen followed by a single letter, and long options
consist of two hyphens followed by several letters and hyphens (e.g., -s and --this-is-a-long-option, respectively).
Every option has at least one long format. Some, such as the --changelist option, feature an abbreviated long-format alias
(--cl, in this case). Only certain options—generally the most-used ones—have an additional short format. To maintain clarity
in this book, we usually use the long form in code examples, but when describing options, if there's a short form, we'll provide
the long form (to improve clarity) and the short form (to make it easier to remember). Use the form you're more comfortable
with when executing your own Subversion commands.

Getting Data into Your Repository
You can get new files into your Subversion repository in two ways: svn import and svn add. We'll discuss svn import now and will
discuss svn add later in this chapter when we review a typical day with Subversion.

Importing Files and Directories

The svn import command is a quick way to copy an unversioned tree of files into a repository, creating intermediate directories as
necessary. svn import doesn't require a working copy, and your files are immediately committed to the repository. You typically use
this when you have an existing tree of files that you want to begin tracking in your Subversion repository. For example:

$ svn import /path/to/mytree \
 http://svn.example.com/svn/repo/some/project \
 -m "Initial import"
Adding mytree/foo.c
Adding mytree/bar.c
Adding mytree/subdir
Adding mytree/subdir/quux.h

Committed revision 1.
$

The previous example copied the contents of the local directory mytree into the directory some/project in the repository. Note
that you didn't have to create that new directory first—svn import does that for you. Immediately after the commit, you can see
your data in the repository:

$ svn list http://svn.example.com/svn/repo/some/project
bar.c
foo.c
subdir/
$

Note that after the import is finished, the original local directory is not converted into a working copy. To begin working on that data
in a versioned fashion, you still need to create a fresh working copy of that tree.

Basic Usage

3

Creating a Working Copy
Most of the time, you will start using a Subversion repository by performing a checkout of your project. Checking out a directory
from a repository creates a working copy of that directory on your local machine. Unless otherwise specified, this copy contains the
youngest (that is, most recently created or modified) versions of the directory and its children found in the Subversion repository:

$ svn checkout http://svn.example.com/svn/repo/trunk
A trunk/README
A trunk/INSTALL
A trunk/src/main.c
A trunk/src/header.h
…
Checked out revision 8810.
$

Although the preceding example checks out the trunk directory, you can just as easily check out a deeper subdirectory of a repository
by specifying that subdirectory's URL as the checkout URL:

$ svn checkout http://svn.example.com/svn/repo/trunk/src
A src/main.c
A src/header.h
A src/lib/helpers.c
…
Checked out revision 8810.
$

Since Subversion uses a copy-modify-merge model instead of lock-modify-unlock (see ???), you can immediately make changes to
the files and directories in your working copy. Your working copy is just like any other collection of files and directories on your
system. You can edit the files inside it, rename it, even delete the entire working copy and forget about it.

While your working copy is “just like any other collection of files and directories on your system,” you can edit files
at will, but you must tell Subversion about everything else that you do. For example, if you want to copy or move an
item in a working copy, you should use svn copy or svn move instead of the copy and move commands provided by
your operating system. We'll talk more about them later in this chapter.

Unless you're ready to commit the addition of a new file or directory or changes to existing ones, there's no need to further notify
the Subversion server that you've done anything.

What Is This .svn Directory?

The topmost directory of a working copy—and prior to version 1.7, every versioned subdirectory thereof—contains a special
administrative subdirectory named .svn. Usually, your operating system's directory listing commands won't show this subdi-
rectory, but it is nevertheless an important directory. Whatever you do, don't delete or change anything in the administrative
area! Subversion uses that directory and its contents to manage your working copy.

Notice that in the previous pair of examples, Subversion chose to create a working copy in a directory named for the final component
of the checkout URL. This occurs only as a convenience to the user when the checkout URL is the only bit of information provided
to the svn checkout command. Subversion's command-line client gives you additional flexibility, though, allowing you to optionally
specify the local directory name that Subversion should use for the working copy it creates. For example:

$ svn checkout http://svn.example.com/svn/repo/trunk my-working-copy
A my-working-copy/README
A my-working-copy/INSTALL
A my-working-copy/src/main.c

Basic Usage

4

A my-working-copy/src/header.h
…
Checked out revision 8810.
$

If the local directory you specify doesn't yet exist, that's okay—svn checkout will create it for you.

Basic Work Cycle
Subversion has numerous features, options, bells, and whistles, but on a day-to-day basis, odds are that you will use only a few of
them. In this section, we'll run through the most common things that you might find yourself doing with Subversion in the course
of a day's work.

The typical work cycle looks like this:

1. Update your working copy. This involves the use of the svn update command.

2. Make your changes. The most common changes that you'll make are edits to the contents of your existing files. But sometimes you
need to add, remove, copy and move files and directories—the svn add, svn delete, svn copy, and svn move commands handle
those sorts of structural changes within the working copy.

3. Review your changes. The svn status and svn diff commands are critical to reviewing the changes you've made in your working
copy.

4. Publish (commit) your changes. The svn commit command transmits your changes to the repository where, if they are accepted,
they create the newest versions of all the things you modified. Now others can see your work, too!

Update Your Working Copy

When working on a project that is being modified via multiple working copies, you'll want to update your working copy to receive
any changes committed from other working copies since your last update. These might be changes that other members of your project
team have made, or they might simply be changes you've made yourself from a different computer. To protect your data, Subversion
won't allow you commit new changes to out-of-date files and directories, so it's best to have the latest versions of all your project's
files and directories before making new changes of your own.

Use svn update to bring your working copy into sync with the latest revision in the repository:

$ svn update
Updating '.':
U foo.c
U bar.c
Updated to revision 2.
$

In this case, it appears that someone checked in modifications to both foo.c and bar.c since the last time you updated, and
Subversion has updated your working copy to include those changes.

When the server sends changes to your working copy via svn update, a letter code is displayed next to each item to let you know
what actions Subversion performed to bring your working copy up to date. To find out what these letters mean, run svn help
update or see ??? in ???.

Make Your Changes
 Now you can get to work and make changes in your working copy. You can make two kinds of changes to your working copy: file
changes and tree changes. You don't need to tell Subversion that you intend to change a file; just make your changes using your text

Basic Usage

5

editor, word processor, graphics program, or whatever tool you would normally use. Subversion automatically detects which files
have been changed, and in addition, it handles binary files just as easily as it handles text files—and just as efficiently, too. Tree
changes are different, and involve changes to a directory's structure. Such changes include adding and removing files, renaming files
or directories, and copying files or directories to new locations. For tree changes, you use Subversion operations to “schedule” files
and directories for removal, addition, copying, or moving. These changes may take place immediately in your working copy, but no
additions or removals will happen in the repository until you commit them.

Versioning Symbolic Links

 On non-Windows platforms, Subversion is able to version files of the special type symbolic link (or “symlink”). A symlink is
a file that acts as a sort of transparent reference to some other object in the filesystem, allowing programs to read and write to
those objects indirectly by performing operations on the symlink itself.

When a symlink is committed into a Subversion repository, Subversion remembers that the file was in fact a symlink, as well as
the object to which the symlink “points.” When that symlink is checked out to another working copy on a non-Windows system,
Subversion reconstructs a real filesystem-level symbolic link from the versioned symlink. But that doesn't in any way limit the
usability of working copies on systems such as Windows that do not support symlinks. On such systems, Subversion simply
creates a regular text file whose contents are the path to which the original symlink pointed. While that file can't be used as a
symlink on a Windows system, it also won't prevent Windows users from performing their other Subversion-related activities.

Here is an overview of the five Subversion subcommands that you'll use most often to make tree changes:

svn add FOO

Use this to schedule the file, directory, or symbolic link FOO to be added to the repository. When you next commit, FOO will
become a child of its parent directory. Note that if FOO is a directory, everything underneath FOO will be scheduled for addition.
If you want only to add FOO itself, pass the --depth=empty option.

svn delete FOO

Use this to schedule the file, directory, or symbolic link FOO to be deleted from the repository. If FOO is a file or link, it is
immediately deleted from your working copy. If FOO is a directory, it is not deleted, but Subversion schedules it for deletion.
When you commit your changes, FOO will be entirely removed from your working copy and the repository.1

svn copy FOO BAR

Create a new item BAR as a duplicate of FOO and automatically schedule BAR for addition. When BAR is added to the repository
on the next commit, its copy history is recorded (as having originally come from FOO). svn copy does not create intermediate
directories unless you pass the --parents option.

svn move FOO BAR

This command is exactly the same as running svn copy FOO BAR; svn delete FOO. That is, BAR is scheduled for
addition as a copy of FOO, and FOO is scheduled for removal. svn move does not create intermediate directories unless you
pass the --parents option.

svn mkdir FOO

1Of course, nothing is ever totally deleted from the repository—just from its HEAD revision. You may continue to access the deleted item in previous revisions. Should
you desire to resurrect the item so that it is again present in HEAD, see ???.

Basic Usage

6

This command is exactly the same as running mkdir FOO; svn add FOO. That is, a new directory named FOO is created
and scheduled for addition.

Review Your Changes
Once you've finished making changes, you need to commit them to the repository, but before you do so, it's usually a good idea to
take a look at exactly what you've changed. By examining your changes before you commit, you can compose a more accurate log
message (a human-readable description of the committed changes stored alongside those changes in the repository). You may also
discover that you've inadvertently changed a file, and that you need to undo that change before committing. Additionally, this is a
good opportunity to review and scrutinize changes before publishing them. You can see an overview of the changes you've made by
using the svn status command, and you can dig into the details of those changes by using the svn diff command.

Look Ma! No Network!

You can use the commands svn status, svn diff, and svn revert without any network access even if your repository is across
the network. This makes it easy to manage and review your changes-in-progress when you are working offline or are otherwise
unable to contact your repository over the network.

 Subversion does this by keeping private caches of pristine, unmodified versions of each versioned file inside its working copy
administrative area (or prior to version 1.7, potentially multiple administrative areas). This allows Subversion to report—and
revert—local modifications to those files without network access. This cache (called the text-base) also allows Subversion to
send the user's local modifications during a commit to the server as a compressed delta (or “difference”) against the pristine
version. Having this cache is a tremendous benefit—even if you have a fast Internet connection, it's generally much faster to
send only a file's changes rather than the whole file to the server.

See an overview of your changes

To get an overview of your changes, use the svn status command. You'll probably use svn status more than any other Subversion
command.

Because the cvs status command's output was so noisy, and because cvs update not only performs an update, but also
reports the status of your local changes, most CVS users have grown accustomed to using cvs update to report their
changes. In Subversion, the update and status reporting facilities are completely separate. See ??? for more details.

If you run svn status at the top of your working copy with no additional arguments, it will detect and report all file and tree
changes you've made.

$ svn status
? scratch.c
A stuff/loot
A stuff/loot/new.c
D stuff/old.c
M bar.c
$

In its default output mode, svn status prints seven columns of characters, followed by several whitespace characters, followed by
a file or directory name. The first column tells the status of a file or directory and/or its contents. Some of the most common codes
that svn status displays are:

? item
The file, directory, or symbolic link item is not under version control.

Basic Usage

7

A item
The file, directory, or symbolic link item has been scheduled for addition into the repository.

C item
The file item is in a state of conflict. That is, changes received from the server during an update overlap with local changes
that you have in your working copy (and weren't resolved during the update). You must resolve this conflict before committing
your changes to the repository.

D item
The file, directory, or symbolic link item has been scheduled for deletion from the repository.

M item
The contents of the file item have been modified.

If you pass a specific path to svn status, you get information about that item alone:

$ svn status stuff/fish.c
D stuff/fish.c

svn status also has a --verbose (-v) option, which will show you the status of every item in your working copy, even if it has
not been changed:

$ svn status -v
M 44 23 sally README
 44 30 sally INSTALL
M 44 20 harry bar.c
 44 18 ira stuff
 44 35 harry stuff/trout.c
D 44 19 ira stuff/fish.c
 44 21 sally stuff/things
A 0 ? ? stuff/things/bloo.h
 44 36 harry stuff/things/gloo.c

This is the “long form” output of svn status. The letters in the first column mean the same as before, but the second column shows
the working revision of the item. The third and fourth columns show the revision in which the item last changed, and who changed it.

None of the prior invocations to svn status contact the repository—they merely report what is known about the working copy items
based on the records stored in the working copy administrative area and on the timestamps and contents of modified files. But
sometimes it is useful to see which of the items in your working copy have been modified in the repository since the last time you
updated your working copy. For this, svn status offers the --show-updates (-u) option, which contacts the repository and adds
information about items that are out of date:

$ svn status -u -v
M * 44 23 sally README
M 44 20 harry bar.c
 * 44 35 harry stuff/trout.c
D 44 19 ira stuff/fish.c
A 0 ? ? stuff/things/bloo.h
Status against revision: 46

Notice in the previous example the two asterisks: if you were to run svn update at this point, you would receive changes to
README and trout.c. This tells you some very useful information—because one of those items is also one that you have locally
modified (the file README), you'll need to update and get the server's changes for that file before you commit, or the repository will
reject your commit for being out of date. We discuss this in more detail later.

Basic Usage

8

svn status can display much more information about the files and directories in your working copy than we've shown here—for an
exhaustive description of svn status and its output, run svn help status or see ??? in ???.

Examine the details of your local modifications

 Another way to examine your changes is with the svn diff command, which displays differences in file content. When you run svn
diff at the top of your working copy with no arguments, Subversion will print the changes you've made to human-readable files
in your working copy. It displays those changes in unified diff format, a format which describes changes as “hunks” (or “snippets”)
of a file's content where each line of text is prefixed with a single-character code: a space, which means the line was unchanged; a
minus sign (-), which means the line was removed from the file; or a plus sign (+), which means the line was added to the file. In the
context of svn diff, those minus-sign- and plus-sign-prefixed lines show how the lines looked before and after your modifications,
respectively.

Here's an example:

$ svn diff
Index: bar.c
===
--- bar.c (revision 3)
+++ bar.c (working copy)
@@ -1,7 +1,12 @@
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <unistd.h>
+
+#include <stdio.h>

 int main(void) {
- printf("Sixty-four slices of American Cheese...\n");
+ printf("Sixty-five slices of American Cheese...\n");
 return 0;
 }

Index: README
===
--- README (revision 3)
+++ README (working copy)
@@ -193,3 +193,4 @@
+Note to self: pick up laundry.

Index: stuff/fish.c
===
--- stuff/fish.c (revision 1)
+++ stuff/fish.c (working copy)
-Welcome to the file known as 'fish'.
-Information on fish will be here soon.

Index: stuff/things/bloo.h
===
--- stuff/things/bloo.h (revision 8)
+++ stuff/things/bloo.h (working copy)
+Here is a new file to describe
+things about bloo.

 The svn diff command produces this output by comparing your working files against its pristine text-base. Files scheduled for
addition are displayed as files in which every line was added; files scheduled for deletion are displayed as if every line was removed
from those files. The output from svn diff is somewhat compatible with the patch program—more so with the svn patch subcommand

Basic Usage

9

introduced in Subversion 1.7. Patch processing commands such as these read and apply patch files (or “patches”), which are files that
describe differences made to one or more files. Because of this, you can share the changes you've made in your working copy with
someone else without first committing those changes by creating a patch file from the redirected output of svn diff:

$ svn diff > patchfile
$

Subversion uses its internal diff engine, which produces unified diff format, by default. If you want diff output in a different format,
specify an external diff program using --diff-cmd and pass any additional flags that it needs via the --extensions (-x)
option. For example, you might want Subversion to defer its difference calculation and display to the GNU diff program, asking
that program to print local modifications made to the file foo.c in context diff format (another flavor of difference format) while
ignoring changes made only to the case of the letters used in the file's contents:

$ svn diff --diff-cmd /usr/bin/diff -x "-i" foo.c
…
$

Commit Your Changes
Finally! Your edits are finished, you've merged all changes from the server, and you're ready to commit your changes to the repository.

The svn commit command sends all of your changes to the repository. When you commit a change, you need to supply a log message
describing your change. Your log message will be attached to the new revision you create. If your log message is brief, you may wish
to supply it on the command line using the --message (-m) option:

$ svn commit -m "Corrected number of cheese slices."
Sending sandwich.txt
Transmitting file data .
Committed revision 3.

However, if you've been composing your log message in some other text file as you work, you may want to tell Subversion to get
the message from that file by passing its filename as the value of the --file (-F) option:

$ svn commit -F logmsg
Sending sandwich.txt
Transmitting file data .
Committed revision 4.

If you fail to specify either the --message (-m) or --file (-F) option, Subversion will automatically launch your favorite editor
(see the information on editor-cmd in ???) for composing a log message.

If you're in your editor writing a commit message and decide that you want to cancel your commit, you can just quit
your editor without saving changes. If you've already saved your commit message, simply delete all the text, save again,
and then abort:

$ svn commit
Waiting for Emacs...Done

Log message unchanged or not specified
(a)bort, (c)ontinue, (e)dit
a
$

Basic Usage

10

The repository doesn't know or care whether your changes make any sense as a whole; it checks only to make sure nobody else has
changed any of the same files that you did when you weren't looking. If somebody has done that, the entire commit will fail with a
message informing you that one or more of your files are out of date:

$ svn commit -m "Add another rule"
Sending rules.txt
svn: E155011: Commit failed (details follow):
svn: E155011: File '/home/sally/svn-work/sandwich.txt' is out of date
…

(The exact wording of this error message depends on the network protocol and server you're using, but the idea is the same in all cases.)

At this point, you need to run svn update, deal with any merges or conflicts that result, and attempt your commit again.

That covers the basic work cycle for using Subversion. Subversion offers many other features that you can use to manage your
repository and working copy, but most of your day-to-day use of Subversion will involve only the commands that we've discussed
so far in this chapter. We will, however, cover a few more commands that you'll use fairly often.

Summary
Now we've covered most of the Subversion client commands. Notable exceptions are those dealing with branching and merging
(see ???) and properties (see ???). However, you may want to take a moment to skim through ??? to get an idea of all the different
commands that Subversion has—and how you can use them to make your work easier.

