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Expectation, Variance

Expectation (continuous)

µ = E[x ] =

∫
xf (x)dx

Expectation (discrete)

E[X ] =
n∑
1

P(xi )xi

Variance

σ2 = E[(x − E[x ])2]



Covariance

cov(x , y) = E[(x − µx)(y − µy )]

Properties:

cov(x , y) = cov(y , x)
If x and y are independent, cov(x , y) = 0
If cov(x , y) > 0, y tends to increase when x increases.
If cov(x , y) < 0, y tends to decrease when x increases.



Covariance Matrix

Covariance matrix:

cov(x) = Σx = E[(x− x̂)(x− x̂)T ]

Where x is a random vector and x̂ is the vector mean.

The entry at row i, column j in the matrix is cov(xi ,xj)



Kalman Filter

Assumes:

Linear state dynamics
Linear sensor model
Normally distributed noise in the state dynamics
Normally distributed noise in the sensor model

State Transition Model:

x(k + 1) = Φx(k) + Γu(k) + v(k)

Sensor Model:

z(k) = Λx(k) + w(k)



Kalman Filter in One Slide

Predict:
Project the state forward:

x̂(k + 1|k) = Φx̂(k) + Γu(k)

Project the covariance of the state estimate forward:

P(k + 1|k) = ΦP(k)ΦT + Cv

Correct:
Compute the Kalman gain:

K(k + 1) = P(k + 1|k)ΛT (ΛP(k + 1|k)ΛT + Cw )−1

Update the estimate with the measurement:

x̂(k + 1) = x̂(k + 1|k) + K(k + 1)(z(k + 1)− Λx̂(k + 1|k))

Update the estimate covariance:

P(k + 1) = (I−K(k + 1)Λ)P(k + 1|k)


