
Discrete State Path Planning

Nathan Sprague

Discrete-State Path Planning

Generic Planning Algorithm
def search(problem):

""" Generic graph search algorithm.
Args:

problem: a problem instance that provides three methods:
problem.start() - returns the start state
problem.goal() - returns the goal state
problem.successors(s) - returns the states that are

adjacent to s
Returns:

True if there exists a sequence of states leading from
problem.start() to problem.goal(), or False if no such
path exists

"""

frontier = Collection() # Queue for BFS, Stack for DFS
closed = set()
frontier.add(problem.start())

while not frontier.is_empty():
cur_state = frontier.pop()
closed.add(cur_state)

if cur_state == problem.goal(): # Success!
return True

else:
Add the neighbors of the selected state to the frontier...
for next_state in problem.successors(cur_state):

if (next_state not in closed and
next_state not in frontier):

frontier.add(next_state)

return False # No path was found!

Generic Planning - Returning the Path
class Node:

"""The Node class stores backward references from each state
to the state that preceded it.

"""
def __init__(self, state, parent_node):

self.state = state
self.parent = parent_node

def search(problem):
""" Returns: A sequence of states leading from problem.start() to

problem.goal(), or None if no path exists
"""
frontier = Collection()
closed = set()

frontier.add(Node(problem.start(), None))

while not frontier.is_empty():
cur_node = frontier.pop()
cur_state = cur_node.state
closed.add(cur_state)

if cur_state == problem.goal():
return construct_path(cur_node) # path ending at this node

else:
for next_state in problem.successors(cur_state):

next_node = Node(next_state, cur_node)
if (next_state not in closed and

next_node not in frontier): # <- Why??
frontier.add(next_node)

return None # Search ended with no path found.

Dijkstra’s Algorithm - Minimum Cost First

def dijkstra(problem):
frontier = PriorityQueue() # <-- Priority Queue for Frontier!
closed = set()

start_node = Node(problem.start(), None, 0.0)
frontier.add(start_node, 0.0) # <-- Priority for the start node is 0.

while not frontier.is_empty():
cur_node = frontier.pop() # <-- Lowest priority/smallest cost from start
cur_state = cur_node.state
closed.add(cur_state)

if cur_state == problem.goal():
return construct_path(cur_node)

else:
for next_state in problem.successors(cur_state):

cost = problem.cost(cur_state, next_state)
next_node = Node(next_state, cur_node, cost)

if next_state not in closed:
Priority (path_cost) is total cost to reach this state...
frontier.add(next_node, next_node.path_cost)

return None

A* Search

I Key idea – reduce the number of expansions by taking
advantage of a heuristic function.

I heuristic function – h(s) maps from states to an estimate of
the cost to reach the goal from that state.

I A* is exactly the same as Dijkstra’s algorithm, except the
frontier is ordered by:
I f (s) = c(s) + h(s)

I c(s) – Actual cost to reach s
I h(s) – Estimated cost from s to goal.
I f (s) – Estimated total cost of the shortest path through s

Heuristic Functions

I A* is guaranteed to find the optimal path as long as the
heuristic function is:
I admissible – Never overestimates the cost to goal
I consistent – h(s) ≤ h(s ′) + cost(s, s ′) for all states s and s ′

I We want a heuristic function that is:
I Efficient to compute
I As close as possible to the true cost

