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Useful Formulas

Definition of conditional probability P (A | B) =
P (A ∩B)

P (B)

Chain rule P (A ∩B) = P (B | A)P (A) = P (A | B)P (B)

Bayes’ rule P (A | B) =
P (B | A)P (A)

P (B)

Total probability theorem P (Z) =

N∑
i

P (Z | X = xi)P (X = xi)

Recursive state estimation formula
Bel−(Xt) =

∑
xt−1∈X

P (Xt | xt−1)Bel(xt−1)

Bel(Xt) = αP (Zt | Xt)Bel−(Xt)

1. Bayes’ Rule and Probability Notation1

A common technique for the localization of robots in industrial settings is to augment the
local environment with specific landmarks (often visual) that can be sensed by the robot.
Suppose we have such a landmark scheme. We are interested in two Boolean random
variables: D - the robot has detected a landmark and L - there is actually a landmark
present. Express each of the following in probability notation using these variables:

(a) When a landmark is present, the system correctly identifies it with probability .9.
In other words, there is a .9 probability that the detector will activate given the
presence of a landmine.

(b) Landmarks are identified falsely (i.e. when no landmark is present) with probability
.01.

(c) The probability of a landmark being present is .05.

1Question is based on question 5 from Appendix A of Computational Principles of Mobile Robotics.



Answer the following questions by writing the desired quantity in probability notation,
then determining the solution.

(d) What is the missed detection probability (probability of missing a landmark even
though one is present)?

(e) What is the probability that a target is present given that one is detected? (Hint:
use Bayes’ rule.)

(f) Complete the following table with the full joint distribution over detections and
landmark presence. (Hint: use the chain rule.)

D L P (D,L)

T T
T F
F T
F F
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2. Bayes’ Rule and Localization

Consider the robot localization scenario described in these slides. What is the final
probability distribution over room locations given the following series of sensor readings?

b (done for you in the slides)

a

b

Assume that the initial distribution is

.4 .4 .1 .1

that the robot is not moving, and that sensor readings are independent given the robot’s
position. (I.e. one incorrect sensor reading does not increase the probability of seeing
the same incorrect sensor reading in the future.)

You should treat the distribution calculated after each sensor reading as the prior distri-
bution for the next sensor reading.
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3. Grid-Based Localization and Tracking

We’ve discussed the application of grid-based localization to the problem of tracking a
robot moving in a circular four-room maze. For this question we will track the same
robot. The robot may choose to move left or right, and we know that the actions succeed
50% of the time. When an action does not succeed, the robot remains in the same
location. Our sensor model tells us that there is an 80% chance that his room sensor
will output the true location, and a 20% that it will indicate one of the rooms to the
immediate left or right of the true location.

Initially, the robot is 75% likely to be in room “a” and 25% likely to be in room “b”:

Bel(X0) =
a b c d

.75 .25 0 0

The robot’s first action is “right” and the first sensor output is “b”.

(a) What will the belief distribution be after one step of prediction (before the sensor
update)? Show your work.

Bel−(X1) =
a b c d

(b) What will the belief distribution be after the sensor update? Show your work.

Bel(X0) =
a b c d
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4. Multivariate Normal Distribution

(a) Recall that the multivariate normal distribution is parameterized by a mean vector
µ and a covariance matrix Σ. Cross out any of the following parameter values that
do not correspond to a valid normal distribution.

µA =

[
3
3

]
,ΣA =

[
1 0
0 1

]
µB =

[
3
4

]
,ΣB =

[
1 0
0 1

]
µC =

[
3
3

]
,ΣC =

[
2 −.5
.5 1

]

µD =

[
3
3

]
,ΣD =

[
1 0
0 .2

]
µE =

[
3
3

]
,ΣE =

[
1 −.3

−.3 1

]
µF =

[
3
3

]
,ΣF =

[
0 .8
.8 0

]

(b) Each of the following figures illustrates one of the probability density functions
parameterized above. Label each figure with the matching parameterization (A-F).
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5. The Kalman Filter

Recall that the Kalman filter requires both a linear system model and a linear measure-
ment model. The system model (without control) can be expressed as

xt = Fxt−1 +wt−1,

where xt represents the system state, F expresses the state dynamics, and wt is a noise
term. The measurement model can be expressed as

zt = Hxt + vt,

where zt is a measurement value, H expresses how sensor values are related to the system
state, and vt is sensor noise.

For this question assume that we want to use a Kalman filter to track an object moving
in one dimension with a fixed acceleration.

The following difference equations describe the system dynamics:

xt = xt−1 + ẋt−1∆t

ẋt = ẋt−1 + ẍt−1∆t

ẍt = ẍt−1

Where xt is the object position, ẋt is the velocity and ẍt is acceleration and ∆t is the
size of the time step.

(a) Assuming that the state of the system is encoded as: xt =

xtẋt
ẍt

, what F matrix

corresponds to the difference equations above?

(b) What should the H matrix be to represent the fact that we have a one-dimensional
sensor that provides an estimate of the object position, but no information about
velocity or acceleration?
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