
Page 1 of 25

Introduction to Homogeneous Transformations & Robot Kinematics
Jennifer Kay, Rowan University Computer Science Department

January 2005

1. Drawing 3 Dimensional Frames in 2 Dimensions
We will be working in 3-D coordinates, and will label the axes x, y, and z. Figure 1 contains a sample 3-D coor-
dinate frame. 

Because we are representing 3-D coordinate frames with 2-D drawings, we have to agree on what these drawings 
mean. Clearly the y axis in Figure 1 points to the right, and the z axis points up, but we have to come up with a 
convention for what direction the x axis is pointing. Since the three axes must be perpendicular to each other, we 
know that the x axis either points into the paper, or out of the paper. Most people instantly assume one or the 
other is the case. To be able to view both cases, it helps to look at the axes overlaid on a cube. Consider the two 
views of the same cube in Figure 2. In view (a) we are looking at the cube from below, in view (b) we are looking 
at the cube from above. Let’s try and overlay the 3-D coordinate frame from Figure 1 onto these two views. 
Before you turn the page, make sure you can see both views of the cube in Figure 2!    

x

y

z

Figure 1. A 3-D coordinate frame.

Figure 2. Two views of the same
cube. The cube is missing the front
side, has a solid back and sides, and
patterned top and bottom. In view a
we are looking at the cube from
below, in view (b) we are looking at
the cube from above.

(a) (b)
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Figure 3 and Figure 4 show the same two views of the cube, this time with the 3-D coordinate frame from Figure 
1 overlaid onto the cube. Note that in Figure 3 the x axis points into the paper, away from you, and in Figure 4 
the x axis is pointing out of the paper towards you!

  

 For the purposes of this document, we will assume that Figure 4 shows the interpretation we will use. In other 
words, if you see 3 axes drawn as they are in Figure 1, you should assume that the x axis points out of the paper 
towards you. If you actually wanted the x axis to be pointing into the paper, you should use the illustration shown 
in Figure 5.

Figure 3. A cube viewed from below.  The edge
labelled x points into the page away from you. 
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Figure 4. The same cube viewed from above.
The edge labelled x points out of the page
towards you. 
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Figure 5. Another 3-D coordinate frame. In this frame, y
points to the right, z points up, and x points away from you
into the paper.
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2. Right Handed Coordinate Systems 

Most of the time we are going to use right handed coordinate systems. In a right handed coordinate system, if 
you know the directions of two out of the three axes, you can figure out the direction of the third. Let’s suppose 
that you know the directions of the x and y axes. For example, suppose that x points to the left, and y points out 
of the paper, as shown in    Figure 6. We want to determine the direction of the z axis. To do so, take your right 
hand, and hold it so that your fingers point in the direction of the x axis in such a way that you can curl your fin-
gers towards the y axis.When you do this, your thumb will point in the direction of the z axis. This process is 
illustrated in Figure 7. The chart in figure 7 details how to compute the direction of any axis given the directions 
of the other two. 

3. Direction of Positive Rotation
Sometimes we want to talk about rotating around one of the axes of a coordinate frame by some angle. Of course, 
if you are looking down an axis and want to spin it, you need to know whether you should spin it clockwise or 
counter-clockwise. We are going to use another right hand rule to determine the direction of positive rotation. 

x

y

Figure 6. x points to the left, and y
points out of the paper towards you.

x

y

Step 1: hold your right hand in 
such a way that your fingers 
point in the direction of the x 
axis and when you curl your 
fingers, they curl towards the 
y axis. 

x

y

Figure 7. Using the right hand rule to compute the direction of the z axis. 

Step 2: As you curl your fin-
gers from the x axis towards 
the y axis, stick your thumb 
in the air. This will be the 
direction of the z axis

x

y

The final 3-D coordinate 
system with the z axis 
shown.

z
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4. Plotting Points in 3 Dimensions
All of us have experience in plotting points on 2-D axes. When it comes to plotting points on 3-D axes, things 
become a bit more difficult. In this section, we will discuss how to plot a number of points on the 3-D axes pre-
sented in Figure 1.

The first step is to draw tick marks on the axes to indicate scale. For the purposes of this document, we will 
assume that each tick represents one unit. Figure 10 shows several different right handed coordinate systems with 
tick marks added. Note that each tick mark is parallel to one of the other axes. This helps the viewer to visualize 
the 3-D effect.     

If you know the 
direction of these axes.

Point the fingers of 
your right hand in the 
direction of this axis.

Curl you right 
fingers towards the 

direction of this axis.

Your thumb will 
point in the direction 

of this axis.

x & y x y z

y & z y z x

x & z z x y

Figure 8. Using the right hand rule to compute the direction of any axis given the directions of
the other two. 

Figure 9. The right hand rule to determine the direction of positive angles. Point your right thumb
along the positive direction of the axis you wish to rotate around. Curl your fingers. The direction
that your fingers curl is the direction of positive rotation.
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(a) The original axes with 
a right hand determining 
the direction of positive 
rotation around the z axis.

x
y

z

(b) After rotating the 
original axes (a) 90o 

around the z axis. 

(c) After rotating the 
original axes (a) -90o 

around the z axis. 

x
z
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Figure 11 shows the point (2,3,4) plotted on the different axes of Figure 10. The technique is quite straightfor-
ward if two of your axes form a plane parallel with the ground. First, draw lines to indicate the projection of the 
point on that plane. Then, draw a line through that point that is parallel to the remaining axis, add tick marks to it, 
and plot your point. 

y

Figure 10. Several different right handed 3-D coordinate frames with tick marks to indicate scale.
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z
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x: out of page towards you
y: right
z: up

x: right
y: out of page towards you
z: down

y

x
z

x: up
y: right
z: into page away from you
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z
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(a) (b) (c)

2

3

4
3

4
2

z

Figure 11. The point (2,3,4) plotted on different axes.
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For example, in Figure 11 (a) the x and y axes form the groundplane, and so we draw lines to indicate where 
(2,3,0) would be. Then, we draw a line through the point (2,3,0) that is parallel to the z axis, add tick marks to it, 
and finally plot our point. Although Figure 11 (b) looks different, the x and y axes still form the groundplane and 
so the procedure is virtually the same. The only difference is that the tick marks on the z axis have been left out 
because when they are included they are difficult to distinguish from the tick marks on the vertical line that con-
nects to the point (2,3,4). In Figure 11 (c), the y and z axes form the groundplane. Thus, we first plot the point 
(0, 3, 4), then draw a line through the point (0,3,4) parallel to the x axis, add tick marks to it, and again plot our 
point (2,3,4).

5. Working With Multiple Coordinate Frames
Sometimes we may want the coordinates of a point given with respect to two or more coordinate frames. For 
example, consider an airport scenario. The coordinate frame of the airport might have its origin at the base of the 
control tower, with the x axis pointing North, the y axis pointing West, and the z axis pointing up. While this is a 
useful coordinate frame for the air traffic controllers to use, a pilot may be more interested in where objects are 
relative to her airplane. Thus, we might have two coordinate frames, “tower coordinates” and “plane coordi-
nates” as illustrated in Figure 12. We use subscripts to distinguish between xt, yt, and zt (the tower coordinate 
frame) and xp, yp, and zp (the plane coordinate frame).

xt

yt

zt

xp

yp

zp

Figure 12. The plane is on the ground preparing for takeoff. Tower coordinates are centered at the base of
the air traffic control tower. x points North, y points West, and z points up. The airplane coordinate system
is centered at the nose of the plane. The x axis points towards the top of the plane, the y axis points out to
the right as you are sitting in the captain’s chair, and the z axis points straight out the front of the plane.

50 meters
5 meters
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When the plane is stopped on the runway as depicted in Figure 12, the nose of the plane might be at location 
(50, 5, 0) in tower coordinates, but it is at the origin (location (0, 0, 0)) in plane coordinates. Similarly, the base 
of the tower is at location (0, 0, 0) in tower coordinates, but at location (0, -5, 50) in plane coordinates.

Note that the location of the nose of the plane is fixed with respect to the plane, but not with respect to the tower. 
When the plane begins to take-off as depicted in Figure 13, its nose is still at location (0,0,0) in plane coordi-
nates, but it is at location (30, 15, 5) in tower coordinates. 

6. Homogeneous Transformations

6.1  Representing Points
Up to this point, we have been using the traditional (x,y,z) notation to represent points in 3-D. However, for the 
remainder of this document, we are going to use a vector notation to represent points. The point (x,y,z) is repre-

sented as the vector . The 1 is a weighting factor. So the vectors  and  all represent that same 

point (x, y, z). Most of the time we will simply use a weighting factor of 1. Consider the more concrete example 
depicted in Figure 13. The plane is at location (30, 15, 10) in tower coordinates. We will normally represent that 

xt

yt

zt

xp

yp
zp

Figure 13. When the plane takes-off, its nose is still at location (0,0,0) in plane coordinates, but it is at a dif-
ferent location in tower coordinates. To determine where it is in tower coordinates, the tower’s x and y axes
have been extended, and the nose of the plane has been plotted in the manner of Figure 11. Thus we see
that the nose of the plane is at location (30, 15, 10) in tower coordinates.
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x
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2x
2y
2z
2

257x
257y
257z
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location as , however it can also be represented as , , , and an infinite number of other 

vectors.

In order to save space in this document, we will often write the point  as  (the transpose of ).

6.2  The Use of Multiple Coordinate Frames in Robotics
It is very common in robotics to use two or more coordinate frames to solve a problem. Suppose the airplane in 
Figure 12 were automatically controlled. It would be very useful to keep track of some things in tower coordi-
nates. For example, the altitude of the plane is simply the z coordinate of its location in tower coordinates. It also 
would be useful to keep track of other things in airplane coordinates. For example, the direction the plane should 
head to in order to avoid a mountain. Indeed, for many mobile robot applications, it is desirable to know the loca-
tions of objects in both “world coordinates” and “robot coordinates.”

Multiple coordinate frames are also useful in traditional robotics. For example, consider the simple robot arm 
depicted in Figure 14. If we want to have the gripper pick up a widget off of a table, then we need to figure out 
the widget’s location. Perhaps we have a camera that we use to initially determine the location of the widget (in 
camera coordinates). We might need to transform that location into world coordinates to evaluate if it is accessi-
ble to the robot at all, and to gripper coordinates to determine when we should close the jaws of the gripper. 

30
15
10
1

60
30
20
2

30–
15–
10–
1–

75
37.5
25
2.5

x
y
z
1

x y z 1
T

x
y
z
1

zw

xw

yw

z j

y j

z g

x g

y g

x j

Figure 14.  A very simple robot arm with one joint and one gripper. The world, camera, joint, and
gripper coordinate frames are indicated.

joint

gripper
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camera zc
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6.3  Transforming Points Between Coordinate Frames
Suppose that you know the location of a point in one coordinate frame (for example, airplane coordinates) and 
you want to know its location in another frame (for example, tower coordinates). How do you do it? We will start 
with a very simple case, and then move into more complex examples.

Let’s begin by considering the two coordinate systems in Figure 15, world coordinates and robot coordinates. 
Notice that the only difference between the two coordinate frames is that the robot frame has been translated by 
3 units along the y axis from the world coordinate frame. 

Figure 16 is a table of some sample points in world coordinates, and their corresponding values in robot coordi-
nates. For the moment, ignore the third column of Figure 16, and just look at the first two columns. Notice that 

any point  in world coordinates is the same as the point  in robot coordinates. Simi-

larly, any point  in robot coordinates is the same as the point  in world coordinates. 

We have seen that one way to convert world coordinates to robot coordinates for the system in Figure 15 is to 
subtract 3 from the y value in world coordinates. Surprisingly, another way to convert points from the world 
coordinate frame of Figure 15 to the robot coordinate frame of Figure 15 is to pre-multiply the point by the 

matrix . The third column of Figure 16 does exactly this and results in the same answer!

a b c 1
T

a b 3–( ) c 1
T

d e f 1
T

d e 3+( ) f 1
T

xw

yw

zw

xr

yr

zr

Figure 15. Two coordinate frames, world (w) and robot (r). The origin of the robot frame
is located at the point (0,3,0) in world coordinates. Using our new notation, we can repre-

sent this as . The two x axes are parallel, as are the two y and the two z axes.

Note that the origin of the world coordinate axes is at  in robot coordinates.

0 3 0 1
T

0 3– 0 1
T

3 units

1 0 0 0
0 1 0 3–
0 0 1 0
0 0 0 1
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Location of a Point in 
World Coordinates of 

Figure 15

Location of the Same 
Point in Robot 
Coordinates of 

Figure 15

Pre-multiplying the point in 
world coordinates by 

1 0 0 0
0 1 0 3–
0 0 1 0
0 0 0 1

0
0
0
1

0
3–

0
1

1 0 0 0
0 1 0 3–
0 0 1 0
0 0 0 1

0
0
0
1

0
3–

0
1

=

0
3
0
1

0
0
0
1

1 0 0 0
0 1 0 3–
0 0 1 0
0 0 0 1

0
3
0
1

0
0
0
1

=

5
10
15
1

5
7
15
1

1 0 0 0
0 1 0 3–
0 0 1 0
0 0 0 1

5
10
15
1

5
7
15
1

=

84
84
84
1

84
81
84
1

1 0 0 0
0 1 0 3–
0 0 1 0
0 0 0 1

84
84
84
1

84
81
84
1

=

4
4–

4
1

4
7–

4
1

1 0 0 0
0 1 0 3–
0 0 1 0
0 0 0 1

4
4–

4
1

4
7–

4
1

=

a
b
c
1

a
b 3–

c
1

1 0 0 0
0 1 0 3–
0 0 1 0
0 0 0 1

a
b
c
1

a
b 3–

c
1

=

Figure 16. Converting between world and robot coordinates as depicted in Figure 15.
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It should be clear that there is nothing magic about the number -3 in our 4x4 matrix other than the fact that we 
moved 3 units along the y axis between the two frames. Indeed, if we had moved 63 units, then pre-multiplying 

by the matrix  would convert points from world coordinates to robot coordinates. 

Similarly, there’s nothing magic about the fact that we did this move along the y axis. We could come up with 
similar matrices for changes in frames that occurred along the y or z axis. Or indeed any combination of moves 
along all three matrices. 

Suppose that to get from the coordinate frame p to the coordinate frame q you need to move a units along p’s x 
axis, b units along p’s y axis, and c units along p’s z axis. Then to take a point from q coordinates to p coordi-

nates, you need to premultiply it by the matrix For example, consider the two coordinate frames of 

Figure 17. To transform the robot coordinate frame into the world coordinate frame, you need to translate 5 units 
along the robot’s x axis, -4 units along the robot’s y axis, and -1 unit along the robot’s z axis. Thus to take a point 
in world coordinates and transform that into a point in robot coordinates, you need to premultiply that point by 

the matrix . Some examples of this can be found in Figure 18     . 

1 0 0 0
0 1 0 63–
0 0 1 0
0 0 0 1

1 0 0 a
0 1 0 b
0 0 1 c
0 0 0 1

1 0 0 5
0 1 0 4–
0 0 1 1–
0 0 0 1

xm

ym

zm

xc

yc

zc

Figure 17. Two coordinate frames that differ by only a translation. To get from car coordi-
nates (c) to mountain coordinates (m) you must translate 5 units along the car’s x axis, -4
units along the car’s y axis, and -1 unit along the car’s z axis. 

5 units

4 units

1 unit
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Figure 18. Converting points from the mountain coordinate frame of Figure 17 to the car
coordinate frame of Figure 17.

Location of a point in 
Figure 17’s mountain 

coordinates

Location of the same 
point in Figure 17’s car 

coordinates

Pre-multiplying the point in 
mountain coordinates by 

1 0 0 5
0 1 0 4–
0 0 1 1–
0 0 0 1

0
0
0
1

5
4–
1–

1

1 0 0 5
0 1 0 4–
0 0 1 1–
0 0 0 1

0
0
0
1

5
4–
1–

1

=

0
3
0
1

5
1–
1–

1

1 0 0 5
0 1 0 4–
0 0 1 1–
0 0 0 1

0
3
0
1

5
1–
1–

1

=

5
10
15
1

10
6
14
1

1 0 0 5
0 1 0 4–
0 0 1 1–
0 0 0 1

5
10
15
1

10
6
14
1

=

84
84
84
1

89
80
83
1

1 0 0 5
0 1 0 4–
0 0 1 1–
0 0 0 1

84
84
84
1

89
80
83
1

=

4
4–

4
1

9
8–

3
1

1 0 0 5
0 1 0 4–
0 0 1 1–
0 0 0 1

4
4–

4
1

9
8–

3
1

=

a
b
c
1

a 5+
b 4–
c 1–

1

1 0 0 5
0 1 0 4–
0 0 1 1–
0 0 0 1

a
b
c
1

a 5+
b 4–
c 1–

1

=
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We call the matrix that converts a point from j coordinates to k coordinates the homogeneous transformation 

from j coordinates to k coordinates, and we abbreviate this as . Figure 19 summarizes how to compute the 

matrix that converts between two frames that only differ by a translation.

6.4  Review: Determining the Homogeneous Transformation when Frames Differ only by Translation
It is very important to note that we have been considering two distinct concepts in our previous discussion:

1. How do we take a point that is in frame a-coordinates and convert it to frame b-coordinates? (In other words, 

what is 

2. How do we compute the transformation between frame a and frame b (i.e. how would we move frame a to 
line it up with frame b)? (We don’t have an abbreviation for this yet).

The two concepts are closely related, but not the same. If we want to know how to take a point in frame a coordi-
nates and convert it to frame b coordinates, the easiest way to do that is to first compute how to move frame b so 
that it lines up with frame a. 

T
k
j

If the coordinate frames j and k only differ by a translation and to get from k coordinates to j 

coordinates you translate (a, b, c) along k’s x, y, and z axes, then , the matrix that takes a 

point in j coordinates to a point in k coordinates is 

We can summarize this with the equation

Trans (a,b,c) = 

T
k
j

1 0 0 a
0 1 0 b
0 0 1 c
0 0 0 1

1 0 0 a
0 1 0 b
0 0 1 c
0 0 0 1

Figure 19. Converting points between coordinate frames that only differ by a translation.

T
b
a
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Now go look at Figure 19 again! Make sure you understand the TWO concepts before you continue on.

In order to remind ourselves that there are TWO concepts, we will use two different sets of notation to represent 

them. We have already discussed , the transformation that takes a point in a-coordinates and computes its 

location in b-coordinates. For the remainder of our discussion, we will use the notation  to represent the trans-

formation that moves the a-coordinate frame into alignment with the b-coordinate frame. Note that the  nota-

tion is non-standard. We summarize the notation in Figure 20. 

6.5  Coordinate Frames that Differ by a Rotation Around One Axis
Consider the two frames depicted in Figure 21. To transform the k coordinate frame into the j coordinate frame 

( ), we perform a rotation about k’s z axis by -90o. By looking at Figure 21 (a), we can see that xk = yj, zk = zj, 

and xj = -1*yk. Let’s look at a few examples. The origin of the j axis in j coordinates: the point  is the 

same as the origin of the j axis in k coordinates . The point  in j coordinates is located at 

T
b
a

F
b
a

F
b
a

Figure 20. Summary of our notation. 

The transformation that you use to take a point in j-coordinates and 
compute its location in k-coordinatesTj

k

F j
k The transformation that you use to take the j coordinate frame and move 

it in such a way that it aligns with the k coordinate frame. Note that this 
is a non-standard notation.

Tj
k Fk

j
= Relationship between T & F

F
j
k

0 0 0 1
T

0 0 0 1
T

a b c 1
T
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 in k coordinates. Again, there is a matrix that we can premultiply points in j coordinates by to trans-

form them into points in k coordinates. If to transform the k coordinate frame into the j coordinate frame you 

rotate about the z axis by , then  you can pre-multiply a point in j coordinates by the matrix 

 ( ) to get the location of the point in k coordinates . 

Let’s check this on the two examples that we’ve done already.    

b a– c 1
T

F
j
k

θ

θcos θsin– 0 0
θsin θcos 0 0

0 0 1 0
0 0 0 1

T
k
j

Figure 21. Two coordinate frames, j and k, that differ only by a rotation about the z axis. To transform
the k coordinate frame into the j coordinate frame, we rotate by -90o about k’s z axis.

xj

yj

zj
zk

xk

yk

(a) the j and k coordinate 
frames overlaid on each 
other.

xj

yj

zj

(b) the j coordinate frame, 
shown on its own for clar-
ity.

zk

xk

yk

(c) the k coordinate frame, 
shown on its own for clar-
ity.
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In our example,  is 90o.  cos -90o  = 0.  sin -90o = -1. So our matrix becomes     .   When we compute 

our matrix * , we get  as expected. When we multiply our matrix *  we get 

 as expected.

At this point we know that we can design a matrix to convert points between two coordinate frames that only dif-
fer by a translation, or by a rotation about the z axis. It should not surprise you to learn that you can also design 
matrices to convert points between two coordinate frames that only differ by a rotation about the x or y axes too. 

6.6  Putting it All Together
So far we have learned how to create the matrix that will compute the coordinates of a point in one coordinate 
frame given the coordinates of that point in another coordinate frame, subject to the following condition: the two 
frames may only differ by a translation (along the 3 axes), or by a rotation about one axis. It is indeed possible to 
convert points between two coordinate frames that differ, perhaps by two translations, or by a rotation then a 
translation and then another rotation. 

The key to understanding how to do this is to understand that there are two ways to view any sequence of trans-
lations and rotations. The first way we will call “moving” coordinate systems. In moving coordinate systems, 
each step happens relative to the steps that have come before it. For example, Figure 23 shows the world and 
gripper coordinate frames for a particular robotic system. Note that not only is the gripper coordinate frame 
translated from the world coordinate frame, but there also must be some sort of rotation that caused the gripper’s 
x axis to point up instead of out of the page towards you as the world coordinates do.

In the “moving axes” approach, we say that to get from world coordinates to gripper coordinates, ( )you need 

to do the following sequence of moves: Rotate about xw by -90 degrees. Call this new frame intermediate frame 
1, and we’ll call its axes x1, y1, and z1. Next rotate about the new z1 by -90 degrees. Call this new frame interme-
diate frame 2, and we’ll call its axes x2, y2, and z2. Finally, translate by (0,0,5) relative to intermediate frame 2. 
This results in the gripper coordinate frame.

The alternative approach is the “fixed axes” approach. In this technique, all of your moves are relative to the 
original world coordinate frame. In the “fixed axes” approach, the picture is still as depicted in Figure 23, but this 
time the sequence of steps is: Rot xw(-90) then Rot yw (-90), then Trans(0,5,0) relative to world coordinates. 

Whether you choose to use the “moving axes” approach or the “fixed axes” approach, your final matrix, ,  

will be the same. However the way you compute it will differ.

θ

0 0 0 1
T

0 0 0 1
T

a b c 1
T

b
a–
c
1

F
g
w

F
g
w
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Figure 22. Summary of transformation matrices

If to convert the k coordinate 
frame into the j coordinate 

frame you have to: 

Then to convert a point in j coordinates 
into a point in k coordinates, 

premultiply that point by: The nickname for this 
transformation is:

Translate 
along k’s x axis by a, 
along k’s y axis by b,
along k’s z axis by c

Trans (a, b, c)

Rotate about k’s x axis by Rot x ( )

Rotate about k’s y axis by Rot y ( )

Rotate about k’s z axis by Rot z ( )

F
k

j T
j

k

1 0 0 a
0 1 0 b
0 0 1 c
0 0 0 1

θ

1 0 0 0
0 θcos θsin– 0
0 θsin θcos 0
0 0 0 1

θ

θ

θcos 0 θsin 0
0 1 0 0

θsin– 0 θcos 0
0 0 0 1

θ

θ

θcos θsin– 0 0
θsin θcos 0 0

0 0 1 0
0 0 0 1

θ
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6.7  Computing the Transformation Matrix Using Moving Axes

Recall that the moving axes approach is as follows: to get from world coordinates to gripper coordinates, , 

you need to do the following sequence of moves: Rotate about xw by -90 degrees. Call this new frame intermedi-
ate frame 1, and we’ll call its axes x1, y1, and z1. Next rotate about the new z1 by -90 degrees. Call this new 
frame intermediate frame 2, and we’ll call its axes x2, y2, and z2. Finally, translate by (0,0,5) relative to interme-
diate frame 2. This results in the gripper coordinate frame.

When we use “moving axes” we list the moves that we did from left to right, compute the individual matrices for 
each part, and then multiply them together. For example, in this situation, our sequence of equations is:

Rot x(-90) * Rot z(-90) * Trans(0,0,5)

The matrices for this product are as follows: 

The resulting matrix, , will transform a point from gripper coordinates to world coordinates (i.e., it’s also 

). For example, consider the point (1, 2, 3) in gripper coordinates. We compute that in world coordinates by 

premultiplying by our new matrix as follows:

xw
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xg

Figure 23. World and gripper coordinate frames for some robot. There are several ways
we can think about transforming between the two coordinate frames. 
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Which you should be able to verify is correct by looking at Figure 23.

6.8  Using Fixed Axes
Recall that the fixed axes approach does everything relative to the original world coordinate frame. The 
sequence of transformations in this case was as follows: Rot xw(-90) then Rot yw (-90), then Trans(0,5,0) relative 
to world coordinates. 

When we using “fixed axes” computation, (i.e. each new rotation is relative to the original gripper coordinate 
frame), we write the equations from right to left.

Trans (0,5,0) * Rot y (-90) * Rot x(-90)

The matrices for this product are as follows:

Check it out! this is the same equation we got when we did the computation using moving axes! (Phew!)

6.9  Fixed Axes WARNING
It is very important to note that rotations under the fixed axis approach can be very deceiving. For example, con-
sider the axes of Figure 24 and suppose you want to rotate the w frame by -90 degrees about the yg axis. The 
rotation is depicted in Figure 25 is not what one might expect! To visualize what is happening, you need to imag-
ine that the two frames are locked together as you perform the rotation.     

0 1 0 0
0 0 1 5
1 0 0 0
0 0 0 1

1
2
3
1

2
8
1
1

=

1 0 0 0
0 1 0 5
0 0 1 0
0 0 0 1

0 0 1– 0
0 1 0 0
1 0 0 0
0 0 0 1

1 0 0 0
0 0 1 0
0 1– 0 0
0 0 0 1

0 1 0 0
0 0 1 5
1 0 0 0
0 0 0 1

=

Figure 24.  Two coordinate frames.
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7. Forward Kinematics
One task that we often wish to do is the following: given the joint angles of a robot arm, compute the transforma-
tion between world and gripper coordinates. Of course, at this point given any fixed joint angles, we already have 
the tools to compute this transformation. However, what we really would like to do is to come up with a transfor-
mation matrix that is a function of the joint angles of the robot.   

7.1  A First Example
Consider the robot arm given in Figure 26. This arm has two links (of length L1 & L2) and one joint which can 
rotate about its Z axis. There are 3 coordinate frames, world coordinates, joint coordinates, and gripper coordi-
nates. Figure 27 contains a picture of the same arm, but this time, the joint has been rotated by 30 degrees (about 
its z axis - the only axis about which it can rotate).

Now look at the * in both figures. It should be clear that the world coordinates of the * do not change between 
Figure 26 and Figure 27, but the location of * in link coordinates does change, as does its location in gripper 
coordinates.   

There is one point in this image whose location does not move in any frame as the joint moves. The point located 
at the very center of the joint (i.e. with Joint coordinates (0,0,0)) is always at world coordinates location 
(L1, 0, 0), and always at (-L2, 0, 0) in gripper coordinates, no matter how you move the joint. 

Suppose that we want to be able to convert between gripper coordinates and world coordinates, as a function of 
the angle of the joint.

Figure 25.  A rotation of the original w coordinate frame from Figure 24 (shown as dotted
arrows) about the yg coordinate frame from Figure 24. 
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Let’s begin by just looking at Figure 26 again and considering the case where the joint is not rotated at all. In this 
case, to convert a point from gripper coordinates to world coordinates all we do is add L1+L2 to whatever the x 
value is. e.g., suppose the * is located at (4, 3, 0) in gripper coordinates. Then it’s obviously located at 
(4+L1+L2, 3, 0) in world coordinates.

But wait! To convert from gripper to world coordinates isn’t as simple as that. Because if the joint is rotated as 
shown in Figure 27, then it’s no longer a simple addition of L1+L2. 

What we want is a way to easily convert between gripper and world coordinates as a function of joint angle. 
Let’s call the angle that the joint is rotated ψ. We want one matrix that has the variable ψ built into it, and if we 
plug in the value for ψ, that matrix will be our matrix that we multiply a point in gripper coordinates by to get the 
point in world coordinates.

Now let’s do the math. To move our frame from world coordinates to gripper coordinates, we need to translate a 
distance of L1 along the x axis, and then rotate by whatever angle our joint is twisted to (e.g. 0 degrees in Figure 

zw

xw

yw

zj

yj

zg

xg

yg

Figure 26.  A simple robot 
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Figure 27.  The arm from Figure 26 with the joint rotated by 30 degrees.
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26 or 30 degrees in Figure 27). We’re going to do it as relative motion, so we end up multiplying the matrices 
Trans(L1, 0, 0) by Rot z (ψ) from left to right. So we have the following :

But of course, this only moves us from world coordinates to joint coordinates. We wanted to move our frame 
from world coordinates to gripper coordinates. Once we have a frame in joint coordinates, moving it to gripper 
coordinates is simply a translation of [L2, 0, 0]. So we need to multiply the two matrices above by 
Trans[L2, 0, 0].

Now, our final equation looks pretty messy, but it’s not too bad. Suppose that ψ is 0 (i.e. we’ve got Figure 26). 
Then we have:

Remember that we computed how to move a frame from world coordinates to gripper coordinates. Which turns 
points in gripper coordinates into points in world coordinates. 

Wow! Figure 30 is actually exactly what we predicted it would be. Look at it. It’s the matrix Trans(L1+L2, 0, 0).

Figure 28. Moving a frame from world coordinates to joint coordinates.

1 0 0 L1
0 1 0 0
0 0 1 0
0 0 0 1

ψcos Ψsin– 0 0
Ψsin ψcos 0 0

0 0 1 0
0 0 0 1

×

ψcos Ψsin– 0 L1
Ψsin ψcos 0 0

0 0 1 0
0 0 0 1

=

Figure 29. Moving a frame from world coordinates to gripper coordinates.

1 0 0 L1
0 1 0 0
0 0 1 0
0 0 0 1

ψcos Ψsin– 0 0
Ψsin ψcos 0 0

0 0 1 0
0 0 0 1

1 0 0 L2
0 1 0 0
0 0 1 0
0 0 0 1

××

ψcos Ψsin– 0 L2 ψcos L1+
Ψsin ψcos 0 L2 Ψsin

0 0 1 0
0 0 0 1

=

 

Figure 30. Moving a frame from world coordinates to gripper coordinates when the joint angle is zero.

ψcos Ψsin– 0 L2 ψcos L1+
Ψsin ψcos 0 L2 Ψsin

0 0 1 0
0 0 0 1

1 0 0 L2+L1
0 1 0 0
0 0 1 0
0 0 0 1

=



 Page 23 of 25

7.2  A Second Example
Just for fun, let’s compute the transformation when the joint is rotated by 90 degrees, so the gripper is pointing 
straight up in the air. Well, we plug in 90 degrees for ψ and we get:

Does this make sense? Think about it. Suppose that you have a point that is located right at the origin of the grip-
per. So in gripper coordinates, it’s location is (0,0,0). Where is that in world coordinates? Let’s multiply:

Hey, it works!

7.3  Some Tips on Using Mathematica
Clearly it’s a major pain to do anything with more than one or two manipulations by hand. Mathematica can 
really help. Here are a couple of hints on how I computed the information for this document. I’m assuming some 
familiarity with the very basics of mathematica.

For starters, I wrote mathematica functions to represent each of the rotation and translation matrices. Just in case 
you haven’t seen a mathematica function before, here’s how you write a function that takes to variables, a and b, 
and returns the mean (average) of a and b (note: the underscore defines what’s a variable. Don’t use underscores 
for anything else or you’ll have problems with your code:

Figure 31. Moving a frame from world coordinates to gripper coordinates when the joint
angle is 90 degrees.

ψcos Ψsin– 0 L2 ψcos L1+
Ψsin ψcos 0 L2 Ψsin

0 0 1 0
0 0 0 1

0 1– 0 L1
1 0 0 L2
0 0 1 0
0 0 0 1

=

Figure 32. Transforming a point from gripper coordinates to world coordinates when
the joint angle is 90 degrees.

0 1– 0 L1
1 0 0 L2
0 0 1 0
0 0 0 1

0
0
0
1

×

L1
L2
0
1

=

Figure 33. A simple mathematica function to compute the mean of two variables

avg[a_, b_] := ((a+b)/2)
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Matrices are represented as lists of lists. So, here is my function for Rotx:

Remember that Mathematica uses radians. So to Rotx by 90 degrees I say

Now, let’s use this function. If I want, I could run my function to see what the matrix is to Rotate x by 0 (this 
should be the identity matrix, right?!) (Note: From this point onwards I’ll show you the “in” and “out” messages 
from Mathematica so you can distinguish my input from its output)

Hmmm, correct, but not really very pleasing to the eye. We can use the built-in MatrixForm function to display 
matrices with a little more beauty:

Rotx[theta_] := (
                      {{1, 0, 0, 0},
                       {0, Cos[theta], -1*Sin[theta], 0},
                       {0, Sin[theta], Cos[theta], 0},
                       {0, 0, 0, 1}}
                )

Rotx[Pi/2]

In[2]:= Rotx[0]

Out[2]= {{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}}

In[3]:= MatrixForm[Rotx[0]]

Out[3]//MatrixForm= i
k
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

y
{
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So what do we get when we rotate about x by Pi/2?:

Looking good!

8. References
Much of this tutorial is derived from “Essential Kinematics for Autonomous Vehicles” by Alonzo Kelly, Carn-
egie Mellon University Robotics Institute technical report number CMU-RI-TR-94-14, May 1994, available on 
the web at http://www.frc.ri.cmu.edu/~alonzo/pubs/reports/pdf_files/kinematics.pdf

In[4] := MatrixForm[Rotx[Pi/2]]

Out[3]//MatrixForm= i
k
1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1

y
{




