#### **Convolutional Neural Networks**

Nathan Sprague

#### Neurons

- Neurons communicate using discrete electrical signals called "spikes" (or action potentials).
  - Spikes travel along axons.
  - Reach axon terminals.
  - Terminals release neurotransmitters.
  - Postsynaptic neurons respond by allowing current to flow in (or out).
  - If voltage crosses a threshold a spike is created



http://2012books.lardbucket.org/books/beginning-psychology/

Creative Commons by-nc-sa 3.0

Linear Regression – The Neural View

- input = x, desired output = y, weight = w.
- h(x) = wx h(x)
- We are given a set of inputs, and a corresponding set of outputs, and we need to choose *w*.
- What's going on geometrically?

#### Lines

- h(x) = wx is the equation of a line with a y intercept of 0.
- What is the best value of w?
- How do we find it?



## **Bias Weights**

- We need to use the general equation for a line:  $h(x) = w_1 x + w_0$
- This corresponds to a new neural network with one additional weight, and an input fixed at 1.



#### Error Metric

• Sum squared error (y is the desired output):

$$Error_{E} = \sum_{e \in E} \frac{1}{2} (y_{e} - h(\boldsymbol{x}_{e}))^{2}$$

• The goal is to find a *w* that minimizes *E*. How?

#### Gradient Descent



http://en.wikipedia.org/wiki/ File:Glacier\_park1.jpg Attribution-share Alike 3.0 Unported

#### Gradient Descent

- One possible approach (maximization):
  - 1)take the derivative of the function: f'(w)
    2)guess a value of w : ŵ
    3)move ŵ a little bit according to the derivative:

$$\hat{w} \leftarrow \hat{w} - \eta f'(\hat{w})$$

4)goto 3, repeat.



#### Multi-Layer Networks



#### Neural Network Example

**Training Data** <u>Network</u>  $\mathbf{X}$  $\boldsymbol{y}$  $\rightarrow 1$  $\mathbf{X}$ y = 1()()

÷

 $\rightarrow 1$ 

#### Backpropagation

• Activation at the output layer:

$$a_k = o\left(\sum_j w_{j,k}^{(2)} g\left(\sum_i w_{i,j}^{(1)} x_i\right)\right)$$

- Here o is the activation function at the output layer. Units at the input layer are indexed with *i*, hidden with *j* and output with *k*.
- Error metric, assuming multiple output units:

$$Error = \frac{1}{k} \sum_{k} (y_k - a_k)^2$$

• Now just compute  $\frac{\partial Error}{\partial w_{i,k}^{(2)}}$  and  $\frac{\partial Error}{\partial w_{i,j}^{(1)}}$ 

Backpropagation Algorithm

• Forward Pass:





• Backward Pass:





# Backpropagation: Some Good News

- Calculating partial derivatives is tedious, but mechanical
- Modern neural network libraries perform automatic differentiation
  - <sup>–</sup> Tensorflow
  - PyTorch
- The programmer just needs to specify the network structure and the loss function – No need to explicitly write code for performing weight updates
- The computational cost for the backward pass is not much more than the cost for the forward pass

### Vanishing Gradients



#### Human Visual System



Urbanski, Marika, Olivier A. Coubard, and Clémence Bourlon. "Visualizing the blind brain: brain imaging of visual field defects from early recovery to rehabilitation techniques." Neurovision: Neural bases of binocular vision and coordination and their implications in visual training programs (2014).

# Convolutional Neural Networks

- Convolutional neural networks use the same trick of learning layers of localized features...
- CNN's were actually being used by Yann Lecun at Bell Labs around 1990

#### Convolutions

#### Grayscale Image 1 convolutional filter



http://upload.wikimedia.org/wikipedia/commons/4/4f/3D\_Convolution\_Animation.gif By Michael Plotke [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)

#### Convolutions

#### Grayscale Image 1 convolutional filter



#### Color Image 5 convolutional filters



http://cs231n.github.io/convolutional-networks/ The MIT License (MIT) Copyright (c) 2015 Andrej Karpathy

http://upload.wikimedia.org/wikipedia/commons/4/4f/3D\_Convolution\_Animation.gif By Michael Plotke [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)

## **Pooling Layers**

- Pooling layers down-sample the filter outputs to
  - Reduce dimensionality and computational requirements
  - Increase the spatial extent of subsequent filters



http://cs231n.github.io/convolutional-networks/ The MIT License (MIT) Copyright (c) 2015 Andrej Karpathy

#### Complete Network

 A "traditional" CNN is composed of convolutional layers, each followed by non-linearities, followed by pooling layers, with a dense (non-convolutional) layer at the end:



Chen, Xianjie, and Alan L. Yuille. "Articulated pose estimation by a graphical model with image dependent pairwise relations." Advances in Neural Information Processing Systems. 2014.

### **Residual Networks**

- How deep can we make these networks? Simply stacking more convolutional layers eventually degrades performance.
- One solution is to introduce "skip connections":



• "Residual learning"

He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

### **Residual Networks**

• ResNet-34:



Get ResNet-50 by introducing "bottleneck" blocks:



• The 1x1 convolutions can be used to increase or decrease the number of channels