Convolutional Neural Networks
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Neurons communicate using
discrete electrical signals called
“spikes” (or action potentials).

Spikes travel along axons.
Reach axon terminals.

Terminals release
neurotransmitters.

Postsynaptic neurons respond
by allowing current to flow in
(or out).

If voltage crosses a threshold
a spike is created
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input = X, desired output = y, weight = w.

* h(x) = wx ‘

w

* We are given a set of inputs, and a
corresponding set of outputs, and we need to
choose w.

* What's going on geometrically?



* h(x) = wx is the equation of a line with a 'y
intercept of O.

* What is the best value of w?

* How do we find it?
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* We need to use the general equation for a line:
h(x) = wx + w,

* This corresponds to a new neural network with
one additional weight, and an input fixed at 1.
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* Sum squared error (y is the desired output):
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* The goal is to find a w that minimizes E.
How?
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* One possible approach (maximization):
1)take the derivative of the function: f'(w)
2)guess a value of w : W
3)move w a little bit according to the derivative:

wew—nf (W)
4)goto 3, repeat.



Neuron Non-linearity
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Activation at the output layer:

ap = O Zw] . g (Z wff?m)

Here o is the activation function at the output layer. Units at the
input layer are indexed with J, hidden with j and output with k.

Error metric, assuming multiple output units:
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Forward Pass: Activation sy

* Backward Pass:




Calculating partial derivatives is tedious, but mechanical

Modern neural network libraries perform automatic
differentiation

~ Tensorflow
~ PyTorch
The programmer just needs to specify the network structure

and the loss function — No need to explicitly write code for
performing weight updates

The computational cost for the backward pass is not much
more than the cost for the forward pass



Error Signal
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Urbanski, Marika, Olivier A. Coubard, and Clémence Bourlon. "Visualizing the blind brain: brain imaging of visual field
defects from early recovery to rehabilitation techniques." Neurovision: Neural bases of binocular vision and coordination

and their implications in visual training programs (2014).



®* Convolutional neural networks use the same trick
of learning layers of localized features...

* CNN’s were actually being used by Yann Lecun at
Bell Labs around 1990



Grayscale Image

1 convolutional filter
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Grayscale Image

1 convolutional filter
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Color Image

5 convolutional filters
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* Pooling layers down-sample the filter outputs to

~ Reduce dimensionality and computational requirements

~ Increase the spatial extent of subsequent filters
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* A “traditional” CNN is composed of convolutional
ayers, each followed by non-linearities, followed by
hooling layers, with a dense (non-convolutional)
ayer at the end:
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Chen, Xianjie, and Alan L. Yuille. "Articulated pose estimation by a graphical model with image dependent
pairwise relations.” Advances in Neural Information Processing Systems. 2014.



* How deep can we make these networks? Simply
stacking more convolutional layers eventually
degrades performance.

* One solution is to introduce “skip connections’:

v

weight layer
f(x) l relu

weight layer

X

identity

* “Residual learning”

He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of
the IEEE conference on computer vision and pattern recognition. 2016.

> 70,000 citations!



* ResNet-34:

image
7x7 conv, 64, /2
pool, /2
3x3 conv, 64
3x3 conv, 64
3x3 conv, 64
3x3 conv, 64
3x3 conv, 64
3x3 conv, 64
3x3 conv, 128
3x3 conv, 128
3x3 conv, 128
3x3 conv, 128
3x3 conv, 128
3x3 conv, 128
3x3 conv, 128
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256

34-layer residual
3x3 conv, 128, /2
3x3 conv, 256, /2
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256

3x3 conv, 512, /2
3x3 conv, 512

* Get ResNet-50 by introducing “bottleneck” bloc

* The 1x1 convolutions can be used to increase or
decrease the number of channels

3x3 cony, 512

KS.

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000
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