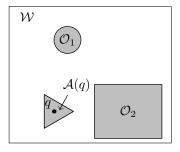
Configuration Spaces

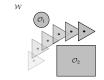

Nathan Sprague

Configuration Spaces

- ▶ A configuration $\mathbf{q} \in \mathcal{C}$ is a vector that contains all of the information necessary to specify the location of a robot and all of its constituent parts.
- ► Turtlebot configuration: $\mathbf{q} = [x, y, \theta]$.
- $ightharpoonup \mathcal{A}(\mathbf{q}) \subset \mathcal{W}$ is the space occupied by the robot in configuration \mathbf{q} .
- $\blacktriangleright \ \mathcal{C}_{obs} = \{ \mathbf{q} \in \mathcal{C} \mid \mathcal{A}(\mathbf{q}) \cap \mathcal{O} \neq \emptyset \}$
- $ightharpoonup \mathcal{C}_{free} = \mathcal{C} \mathcal{C}_{obs}$

Example C-Space

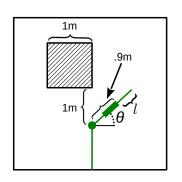
Triangular non-rotating robot:

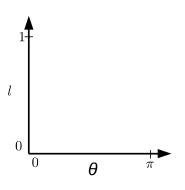

Video

Looking Ahead... Planning

Path planning - Finding a continous path from \mathbf{q}_I to the goal configuration \mathbf{q}_G .

Triangle robot:


Two link arm:



Exercise

Draw C_{free} for this robot:

- Robot arm with a single rotational joint and a single prismatic joint
- / prismatic joint extension in meters
- lacktriangledown heta angle of rotational joint ($\Thetapprox\pi/4$ in the image)

Holonomic vs. Non-Holonomic Constraints

- ► Holonomic Constraints on configurations
- Non-Holonomic Constraints on trajectories (which may make some configurations unreachable)