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Probability Notation

Probability Functions/Distributions:

P(A) is a function that maps from all possible values of A to
the probability of the corresponding event.
Examples:

P(A = true) = .9
P(A = false) = .1
P(B = red) = .8
P(B = blue) = .1
P(B = green) = .1

P(A) is also referred to as a prior probability.



Sample Spaces and Joint Probability Distributions

Sample space is the set of all possible outcomes.

The full joint probability distribution assigns a probability to
each element of the sample space:

S - Squished, U - Under falling Piano

S U P(S ,U)

T T .008
T F .002
F T .001
F F .989



Conditional Probability

P(A | B) Expresses the probability of assignments to A given
assignments to B.

P(SQUISHED = true) = .01
P(SQUISHED = true | UNDER PIANO = true) ≈ .89

P(A | B) =
P(A ∩ B)

P(B)



Bayes Rule

P(A | B) =
P(B | A)P(A)

P(B)

Very handy for updating our beliefs on the basis of evidence.



Bayes Rule Example

Robot is in a simple four room maze, rooms are labeled a-d.

Initially, we think he is most likely to be in the left half,
P(X = a) = .4, P(X = b) = .4, ...

a b c d

.4 .4 .1 .1



Bayes Rule Example

Robot has a sensor designed to tell him what room he is in.

Sensor is not perfect: only 80% likely to report he is in the
correct room. 20% of the time the sensor is off by one.
(Errors at the edge wrap around.)

Distribution of sensor readings when robot is in a:

a b c d

.8 .1 0 .1

In probability notation, where X is the position and Z is
sensor reading.

P(Z = a | X = a) = .8
P(Z = b | X = a) = .1
P(Z = c | X = a) = 0
P(Z = d | X = a) = .1



Bayes Rule Example

Given that we have a sensor model, Baye’s rule enables us to
update our prior beliefs based on sensor input:

P(X | Z ) =
P(Z | X )P(X )

P(Z )



Bayes Rule Example

Let’s calculate P(X = a | Z = b)

P(X = a | Z = b) =
P(Z = b | X = a)P(X = a)

P(Z = b)

P(Z = b | X = a) = .1 (From our sensor model)

P(X = a) = .4 (Our prior)

P(Z = b) (??)



Bayes Rule Example

To calculate P(Z = b), we can use the total probability theorem:

P(Z ) =
N∑
i

P(X = xi )P(Z | X = xi )

We can also treat P(Z ) as an unknown constant,

P(X | Z ) = ηP(Z | X )P(X )

and set it to whatever value makes P(X | Z ) sum to 1. The two
approaches are equivalent.



Bayes Rule Example

Back to work...

P(X = a | Z = b) =
P(Z = b | X = a)P(X = a)

P(Z = b)

= η × .1× .4 = .04η

Similarly:

P(X = b | Z = b) = η × .8× .4 = .32η

P(X = c | Z = b) = η × .1× .1 = .01η

P(X = d | Z = b) = η × 0× .1 = 0



Bayes Rule Example

Therefore, after our sensor reading, the updated distribution over
possible robot locations is:

a b c d

.04η .32η .01η 0

We know the robot is somewhere, so we know that:

.04η + .32η + .01η = 1

η =
1

.04 + .32 + .01
= 1/.37 ≈ 2.70



Bayes Rule Example

Finally, we have an updated belief about the robot location:

a b c d

.108 .865 .027 0

We may use this as our new prior, and incorporate additional
sensor readings.


