CS240

Nathan Sprague

February 2, 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

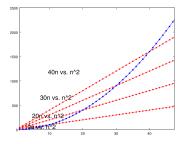
$\mathsf{Big}\text{-}\Theta$ / Order Notation

 Informal description: Growth functions are categorized according to their dominant (fastest growing) term

- Constants and lower-order terms are discarded
- Examples:
 - 10 $n \in \Theta(n)$
 - $\bullet 5n^2 + 2n + 3 \in \Theta(n^2)$
 - $\blacksquare \ n \log n + n \in \Theta(n \log n)$
- We could read this as "10*n* is order *n*"

Why Drop the Constants?

Example...



▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Why Drop the Constants?

 Despite constants, functions from slower growing classes will always be faster eventually

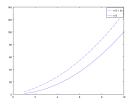
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Why Drop Lower Order Terms

 Contribution of lower-order terms becomes insignificant as input size increases

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

This difference looks important:

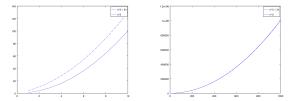


Why Drop Lower Order Terms

 Contribution of lower-order terms becomes insignificant as input size increases

(日) (四) (日) (日) (日)

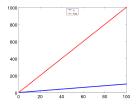
- This difference looks important:
- It looks less important now.



Are we SURE we want to drop the constants?

For two growth functions in the same complexity class, constant factors continue to have an impact, regardless of input size...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



Why Drop the Constants? (Again?)

- Real goal is to understand the relative impact of increasing input size
- Equivalently: allow us to predict the impact of using a faster computer
- Constant factors are influenced by all the distractions we mentioned before:

- Choice of basic operation
- Programming language
- ...

Why Drop the Constants? (Again?)

- Real goal is to understand the relative impact of increasing input size
- Equivalently: allow us to predict the impact of using a faster computer
- Constant factors are influenced by all the distractions we mentioned before:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- Choice of basic operation
- Programming language
- **...**

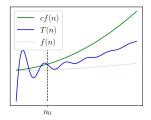
That said... We DO care about constant factors.

Big O

For T(n) a non-negative function, $T(n) \in O(f(n))$ if and only if there exist positive constants c and n_0 such that

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 $T(n) \leq cf(n)$ for all $n > n_0$.



Big O

For T(n) a non-negative function, $T(n) \in O(f(n))$ if and only if there exist positive constants c and n_0 such that

 $T(n) \leq cf(n)$ for all $n > n_0$.

Informal rule of "dropping constants" follows immediately:

• $50n \stackrel{?}{\in} O(n)$

Big O

For T(n) a non-negative function, $T(n) \in O(f(n))$ if and only if there exist positive constants c and n_0 such that

 $T(n) \leq cf(n)$ for all $n > n_0$.

- Informal rule of "dropping constants" follows immediately:
 - $50n \stackrel{?}{\in} O(n)$
 - Yes! choose c = 50, $n_0 = 1$, clearly
 - $50n \leq 50n$ for all n > 1

Big O

For T(n) a non-negative function, $T(n) \in O(f(n))$ if and only if there exist positive constants c and n_0 such that

 $T(n) \leq cf(n)$ for all $n > n_0$.

Informal rule of "dropping lower-order terms" also follows:

■ $n^2 + 40n \stackrel{?}{\in} O(n^2)$

Big O

For T(n) a non-negative function, $T(n) \in O(f(n))$ if and only if there exist positive constants c and n_0 such that

 $T(n) \leq cf(n)$ for all $n > n_0$.

Informal rule of "dropping lower-order terms" also follows:

■
$$n^2 + 40n \stackrel{?}{\in} O(n^2)$$

Notice that:

 $n^2 + 40n \le n^2 + 40n^2 = 41n^2$

Big O

For T(n) a non-negative function, $T(n) \in O(f(n))$ if and only if there exist positive constants c and n_0 such that

 $T(n) \leq cf(n)$ for all $n > n_0$.

Informal rule of "dropping lower-order terms" also follows:

■
$$n^2 + 40n \stackrel{?}{\in} O(n^2)$$

Notice that:

$$n^2 + 40n \le n^2 + 40n^2 = 41n^2$$

Choose c = 41, $n_0 = 1$, clearly $n^2 + 40n \le 41n^2$ for all n > 1

Big O Describes an Upper Bound

- \blacksquare Big O is loosely analogous to \leq
- All of these statements are true: $n^2 \in O(n^2)$ $n^2 \in O(n^4)$ $n^2 \in O(n^1)$... $2n^2 \in O(n^2)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Upper Bounds

Big-O descriptions are imprecise in two different ways:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

- No constants or lower-order terms
 - GOOD: fewer distractions

Upper Bounds

- Big-O descriptions are imprecise in two different ways:
 - No constants or lower-order terms
 - GOOD: fewer distractions
 - Only provides an upper bound. Correct to say an algorithm requires O(n³) steps, even if it only requires n steps.
 - UNFORTUNATE: conveys an incomplete analysis

Socrative Quiz!

Alyce is working on the analysis of a complex algorithm for finding sequence matches in a DNA database. She can easily show that the algorithm requires no more than $n^2 + n$ base-pair comparisons in the worst case. She hopes to show that the algorithm requires at most $n \log n + n$ comparisons. How should Alyce describe the running time of the algorithm given the current state of her analysis?

A)
$$O(n^3)$$

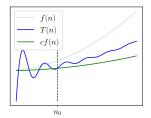
B) $O(n^2 + n)$
C) $O(n^2)$
D) $O(n \log n + n)$
E) $O(n)$

Big Ω

For T(n) a non-negative function, $T(n) \in \Omega(f(n))$ if and only if there exist positive constants c and n_0 such that

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $T(n) \ge cf(n)$ for all $n > n_0$.



Big Omega

- Big Ω is loosely analogous to \geq
- All of these statements are true: $n^2 \in \Omega(n^2)$ $n^4 \in \Omega(n^2)$ $n! \in \Omega(n^2)$... $n^2 \in \Omega(2n^2)$

Big Theta

$\mathsf{Big}\;\Theta$

 $egin{aligned} f(n) \in heta(g(n)) & ext{iff,} \ & f(n) \in O(g(n)) & ext{and} & f(n) \in \Omega(g(n)) \end{aligned}$

- \blacksquare Big Θ is loosely analogous to =
- Which of these statements are true? $n^2 \stackrel{?}{\in} \Theta(n^2)$ $2n^2 \stackrel{?}{\in} \Theta(n^2)$ $n^2 \stackrel{?}{\in} \Theta(n^4)$ $5n^2 + 2n \stackrel{?}{\in} \Theta(4n^3)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Big Theta

Big Θ

 $f(n) \in heta(g(n))$ iff, $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$

- Big Θ is loosely analogous to =
- Which of these statements are true? $n^2 \in \Theta(n^2)$

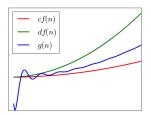
$$2n^{2} \in \Theta(n^{2})$$

$$n^{2} \notin \Theta(n^{4})$$

$$5n^{2} + 2n \notin \Theta(4n^{3})$$

Socrative Quiz

What relationship(s) is(are) illustrated by the following figure?



A)
$$f(n) \in O(g(n))$$

B) $f(n) \in \Omega(g(n))$
C) $f(n) \in \Theta(g(n))$
D) $g(n) \in O(f(n))$
E) $g(n) \in \Omega(f(n))$
F) $g(n) \in \Theta(f(n))$
G) A, B and C are all correct
H) D, E and F are all correct

▲□▶ ▲圖▶ ▲園▶ ▲園▶ 三国 - 釣A@

Algorithm Analysis Algorithm

- STEP 1: Select a measure of input size and a basic operation
- STEP 2: Develop a function T(n) that describes the number of times the basic operation occurs as a function of input size
- STEP 3: Describe T(n) using order notation
 - Big-O for an upper bound
 - "The algorithm is at least this fast!"
 - Big- Ω for a lower bound
 - "The algorithm is at least this slow!"

■ Big-⊖ for both upper and lower bound