For each of the algorithm listings below:
Count all assignments to sum
.
public static int someFunc1(int[] numbers) {
int sum = 0;
for (int num : numbers) {
sum += num;
for (int i = 0; i < 20; i++) {
sum += i;
}
}
return sum;
}
Count all assignments to sum
.
public static int fun(int[] numbers) {
int sum = 0;
for (int i = 0; i < numbers.length; i++) {
sum += numbers[i];
for (int j = i; j < numbers.length; j++) {
sum += numbers[i] * numbers[j];
}
}
return sum;
}
Count assignments to s
.
PROCEDURE DoStuff(numbers1, numbers2)
s <- 0
FOR x IN numbers1 DO
FOR y IN numbers2 DO
IF x < y DO
RETURN 0
ELSE
s <- s + x
ENDIF
ENDFOR
ENDFOR
FOR x IN numbers2 DO
s <- s + x
ENDFOR
RETURN s
Select an appropriate basic operation.
public static int fun3(ArrayList<Integer> nums1, ArrayList<Integer> nums2) {
int overlap = 0;
for (int num : nums1) {
if (nums2.contains(num)) {
overlap++;
}
}
return overlap;
}
Use incrementing sum
as the basic operation. For the sake of
simplicity, you may assume that the length of numbers
is a power of 2.
public static int fun4(int[] numbers) {
int sum = 0;
for (int i = numbers.length - 1; i >= 1; i /= 2) {
for (int j = 0; j < numbers.length / 2; j++) {
sum++;
}
}
return sum;
}
public static int fun5(int[] numbers) {
int sum = 0;
for (int i = 0; i < numbers.length; i++) {
flibbert(numbers); // We know that flibbert requires fewer than
// n^2 operations in the worst case.
}
return sum;
}