
CS240

Nathan Sprague

January 24, 2020

Alternate Definition of Big-O

Big O

f (n) ∈ O(g(n)) if

lim
n→∞

f (n)

g(n)
= c <∞

where c is some constant (possibly 0)

Alternate Definitions of Big-O

Big O

f (n) ∈ O(g(n)) if

lim
n→∞

f (n)

g(n)
= c <∞

where c is some constant (possibly 0)

n3 + 2n ∈ n3

lim
n→∞

n3 + 2n

n3
= lim

n→∞
1 +

2

n2
= 1

Alternate Definitions of Big-O

Big O

f (n) ∈ O(g(n)) if

lim
n→∞

f (n)

g(n)
= c <∞

where c is some constant (possibly 0)

n3 + 2n ∈ n3

lim
n→∞

n3 + 2n

n3
= lim

n→∞
1 +

2

n2
= 1

Alternate Definitions of O, Ω, Θ

Big Ω

f (n) ∈ Ω(g(n)) if

lim
n→∞

f (n)

g(n)
= c > 0

where c is some constant (possibly ∞)

Alternate Definitions of O, Ω, Θ

Big Θ

f (n) ∈ Θ(g(n)) if

lim
n→∞

f (n)

g(n)
= c , 0 < c <∞

where c is some constant.

A Complication

Let’s analyze this algorithm:

1 public static boolean contains(int target ,

2 int[] numbers) {

3 for (int number : numbers) {

4 if (number == target) {

5 return true;

6 }

7 }

8 return false;

9 }

Best, Worst, Average Case

1 public static boolean contains(int target ,

2 int[] numbers) {

3 for (int number : numbers) {

4 if (number == target) {

5 return true;

6 }

7 }

8 return false;

9 }

Best Case: 1 comparison, O(1)

Worst Case: n comparisons, O(n)

Average Case: n+1
2

comparisons, O(n)

Refined Algorithm Analysis Algorithm

STEP 1: Decide on best, worst, or average case analysis

STEP 2: Select a measure of input size and a basic
operation

STEP 3: Find a function T (n) that describes the number
of times the basic operation occurs

STEP 4: Describe T (n) using order notation:

Big-O for an upper bound
“The algorithm is at least this fast!”

Big-Ω for a lower bound
“The algorithm is at least this slow!”

Big-Θ for both upper and lower bound

L’Hôpital’s Rule

L’Hôpital’s Rule

If lim
n→∞

f (n) = lim
n→∞

g(n) =∞ and f ′(n) and g ′(n) exist, then

lim
n→∞

f (n)

g(n)
= lim

n→∞

f ′(n)

g ′(n)

L’Hôpital Example

n log2 n
?
∈ O(n2)

lim
n→∞

n log2 n

n2
= lim

n→∞

log2 n

n

= lim
n→∞

ln n

n ln 2
(Recall that logb(n) =

logk n

logk b
)

Apply L’Hôpital’s rule:

= lim
n→∞

1
n

ln 2
(Recall that d

dx
ln x = 1/x)

= lim
n→∞

1

n ln 2
= 0

L’Hôpital Example

n log2 n
?
∈ O(n2)

lim
n→∞

n log2 n

n2
= lim

n→∞

log2 n

n

= lim
n→∞

ln n

n ln 2
(Recall that logb(n) =

logk n

logk b
)

Apply L’Hôpital’s rule:

= lim
n→∞

1
n

ln 2
(Recall that d

dx
ln x = 1/x)

= lim
n→∞

1

n ln 2
= 0

L’Hôpital Example

n log2 n
?
∈ O(n2)

lim
n→∞

n log2 n

n2
= lim

n→∞

log2 n

n

= lim
n→∞

ln n

n ln 2
(Recall that logb(n) =

logk n

logk b
)

Apply L’Hôpital’s rule:

= lim
n→∞

1
n

ln 2
(Recall that d

dx
ln x = 1/x)

= lim
n→∞

1

n ln 2
= 0

L’Hôpital Example

n log2 n
?
∈ O(n2)

lim
n→∞

n log2 n

n2
= lim

n→∞

log2 n

n

= lim
n→∞

ln n

n ln 2
(Recall that logb(n) =

logk n

logk b
)

Apply L’Hôpital’s rule:

= lim
n→∞

1
n

ln 2
(Recall that d

dx
ln x = 1/x)

= lim
n→∞

1

n ln 2
= 0

L’Hôpital Example

n log2 n
?
∈ O(n2)

lim
n→∞

n log2 n

n2
= lim

n→∞

log2 n

n

= lim
n→∞

ln n

n ln 2
(Recall that logb(n) =

logk n

logk b
)

Apply L’Hôpital’s rule:

= lim
n→∞

1
n

ln 2
(Recall that d

dx
ln x = 1/x)

= lim
n→∞

1

n ln 2
= 0

What If We Want to Show That f(n) is NOT

O(g(n))

Easiest approach is usually to show:

lim
n→∞

f (n)

g(n)
=∞

OpenDSA Question

Suppose that a particular algorithm has time complexity T (n) = 3× 2n

and that executing an implementation of it on a particular machine takes

t seconds for n inputs. Now suppose that we are presented with a

machine that is 64 times as fast. How many inputs could we process on

the new machine in t seconds?

OpenDSA Question

Let’s call the input size we could handle before nold . The number of
steps we completed in t seconds was: 3× 2nold .

Since our new computer is 64 times faster, the number of steps we
can perform in t seconds is now 64× 3× 2nold

Our complexity function tells us that steps = 3× 2n, we can solve
for size (n):

s = 3× 2n

s/3 = 2n

log2(s/3) = n

n = log2(s/3)

OpenDSA Question

Now we plug in our step budget for s:

n = log2(64×3×2nold
3)

n = log2(64× 2nold)

n = log2(26 × 2nold)

n = log2(2nold+6)

n = nold + 6

