CS240

Nathan Sprague

September 3, 2021

A Complication

■ Let's analyze this algorithm:

Best, Worst, Average Case

```
public static boolean contains(int target,
    int[] numbers) {
    for (int number : numbers) {
        if (number == target) {
            return true;
        }
    }
    return false;
}
```

■ Best Case: 1 comparison, $O(1)$

- Worst Case: n comparisons, $O(n)$

■ Average Case: $\frac{n+1}{2}$ comparisons, $O(n)$

Refined Algorithm Analysis Algorithm

■ STEP 1: Decide on best, worst, or average case analysis
■ STEP 2: Select a measure of input size and a basic operation

- STEP 3: Find a function $T(n)$ that describes the number of times the basic operation occurs
- STEP 4: Describe $T(n)$ using order notation:
- Big-O for an upper bound
"The algorithm is at least this fast!"
- $\operatorname{Big}-\Omega$ for a lower bound
"The algorithm is at least this slow!"
- Big- Θ for both upper and lower bound

L'Hôpital's Rule

L'Hôpital's Rule

If $\lim _{n \rightarrow \infty} f(n)=\lim _{n \rightarrow \infty} g(n)=\infty$ and $f^{\prime}(n)$ and $g^{\prime}(n)$ exist, then

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty} \frac{f^{\prime}(n)}{g^{\prime}(n)}
$$

L'Hôpital Example

$\square \log _{2} n \stackrel{?}{\in} O\left(n^{2}\right)$

L'Hôpital Example

- $n \log _{2} n \stackrel{?}{\in} O\left(n^{2}\right)$
- $\lim _{n \rightarrow \infty} \frac{n \log _{2} n}{n^{2}}=\lim _{n \rightarrow \infty} \frac{\log _{2} n}{n}$

L'Hôpital Example

- $n \log _{2} n \stackrel{?}{\in} O\left(n^{2}\right)$
- $\lim _{n \rightarrow \infty} \frac{n \log _{2} n}{n^{2}}=\lim _{n \rightarrow \infty} \frac{\log _{2} n}{n}$
$■=\lim _{n \rightarrow \infty} \frac{\ln n}{n \ln 2} \quad\left(\right.$ Recall that $\left.\log _{b}(n)=\frac{\log _{k} n}{\log _{k} b}\right)$

L'Hôpital Example

- $n \log _{2} n \stackrel{?}{\in} O\left(n^{2}\right)$
- $\lim _{n \rightarrow \infty} \frac{n \log _{2} n}{n^{2}}=\lim _{n \rightarrow \infty} \frac{\log _{2} n}{n}$
$■=\lim _{n \rightarrow \infty} \frac{\ln n}{n \ln 2} \quad\left(\right.$ Recall that $\left.\log _{b}(n)=\frac{\log _{k} n}{\log _{k} b}\right)$
- Apply L'Hôpital's rule:

■ $=\lim _{n \rightarrow \infty} \frac{\frac{1}{n}}{\ln 2} \quad$ (Recall that $\left.\frac{d}{d x} \ln x=1 / x\right)$

L'Hôpital Example

- $n \log _{2} n \stackrel{?}{\in} O\left(n^{2}\right)$
- $\lim _{n \rightarrow \infty} \frac{n \log _{2} n}{n^{2}}=\lim _{n \rightarrow \infty} \frac{\log _{2} n}{n}$
$■=\lim _{n \rightarrow \infty} \frac{\ln n}{n \ln 2} \quad$ (Recall that $\left.\log _{b}(n)=\frac{\log _{k} n}{\log _{k} b}\right)$
- Apply L'Hôpital's rule:
$\square=\lim _{n \rightarrow \infty} \frac{\frac{1}{n}}{\ln 2} \quad(\operatorname{Re}$
$■=\lim _{n \rightarrow \infty} \frac{1}{n \ln 2}=0$

What If We Want to Show That $f(n)$ is NOT $\mathrm{O}(\mathrm{g}(\mathrm{n}))$

■ Easiest approach is usually to show:

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty
$$

OpenDSA Question

Suppose that a particular algorithm has time complexity $T(n)=3 \times 2^{n}$ and that executing an implementation of it on a particular machine takes t seconds for n inputs. Now suppose that we are presented with a machine that is 64 times as fast. How many inputs could we process on the new machine in t seconds?

OpenDSA Question

- Let's call the input size we could handle before $n_{\text {old }}$. The number of steps we completed in t seconds was: $3 \times 2^{n_{\text {old }}}$.
- Since our new computer is 64 times faster, the number of steps we can perform in t seconds is now $64 \times 3 \times 2^{n_{\text {old }}}$
- Our complexity function tells us that steps $=3 \times 2^{n}$, we can solve for size (n):
- $s=3 \times 2^{n}$
- $s / 3=2^{n}$
- $\log _{2}(s / 3)=n$
- $n=\log _{2}(s / 3)$

OpenDSA Question

Now we plug in our step budget for s :
■ $n=\log _{2}\left(\frac{64 \times 3 \times 2^{n o l d}}{3}\right)$
■ $n=\log _{2}\left(64 \times 2^{n_{\text {old }}}\right)$

- $n=\log _{2}\left(2^{6} \times 2^{n_{\text {old }}}\right)$

■ $n=\log _{2}\left(2^{n_{\text {old }}+6}\right)$

- $n=n_{\text {old }}+6$

