
CS240

Nathan Sprague

September 4, 2020

Big-Θ / Order Notation

Informal description: Growth functions are categorized
according to their dominant (fastest growing) term

Constants and lower-order terms are discarded

Examples:

10n ∈ Θ(n)
5n2 + 2n + 3 ∈ Θ(n2)
nlogn + n ∈ Θ(nlogn)

We could read this as “10n is order n”

Why Drop the Constants?

Example...

Why Drop the Constants?

Despite constants, functions from slower growing classes
will always be faster eventually

Why Drop Lower Order Terms

Contribution of lower-order terms becomes insignificant
as input size increases

This difference looks important:

It looks less important now.

Why Drop Lower Order Terms

Contribution of lower-order terms becomes insignificant
as input size increases

This difference looks important:

It looks less important now.

Are we SURE we want to drop the constants?

For two growth functions in the same complexity class,
constant factors continue to have an impact, regardless of
input size...

Why Drop the Constants? (Again?)

Real goal is to understand the relative impact of
increasing input size

Equivalently: allow us to predict the impact of using a
faster computer

Constant factors are influenced by all the distractions we
mentioned before:

Choice of basic operation
Programming language
...

That said... We DO care about constant factors.

Why Drop the Constants? (Again?)

Real goal is to understand the relative impact of
increasing input size

Equivalently: allow us to predict the impact of using a
faster computer

Constant factors are influenced by all the distractions we
mentioned before:

Choice of basic operation
Programming language
...

That said... We DO care about constant factors.

Formal Definition of Big-O

Big O

For T (n) a non-negative function, T (n) ∈ O(f (n)) if and only
if there exist positive constants c and n0 such that

T (n) ≤ cf (n) for all n > n0.

Formal Definition of Big-O

Big O

For T (n) a non-negative function, T (n) ∈ O(f (n)) if and only
if there exist positive constants c and n0 such that

T (n) ≤ cf (n) for all n > n0.

Informal rule of “dropping constants” follows
immediately:

50n
?
∈ O(n)

Yes! choose c = 50, n0 = 1, clearly
50n ≤ 50n for all n > 1

Formal Definition of Big-O

Big O

For T (n) a non-negative function, T (n) ∈ O(f (n)) if and only
if there exist positive constants c and n0 such that

T (n) ≤ cf (n) for all n > n0.

Informal rule of “dropping constants” follows
immediately:

50n
?
∈ O(n)

Yes! choose c = 50, n0 = 1, clearly
50n ≤ 50n for all n > 1

Formal Definition of Big-O

Big O

For T (n) a non-negative function, T (n) ∈ O(f (n)) if and only
if there exist positive constants c and n0 such that

T (n) ≤ cf (n) for all n > n0.

Informal rule of “dropping lower-order terms” also
follows:

n2 + 40n
?
∈ O(n2)

Notice that:
n2 + 40n ≤ n2 + 40n2 = 41n2

Choose c = 41, n0 = 1, clearly
n2 + 40n ≤ 41n2 for all n > 1

Formal Definition of Big-O

Big O

For T (n) a non-negative function, T (n) ∈ O(f (n)) if and only
if there exist positive constants c and n0 such that

T (n) ≤ cf (n) for all n > n0.

Informal rule of “dropping lower-order terms” also
follows:

n2 + 40n
?
∈ O(n2)

Notice that:
n2 + 40n ≤ n2 + 40n2 = 41n2

Choose c = 41, n0 = 1, clearly
n2 + 40n ≤ 41n2 for all n > 1

Formal Definition of Big-O

Big O

For T (n) a non-negative function, T (n) ∈ O(f (n)) if and only
if there exist positive constants c and n0 such that

T (n) ≤ cf (n) for all n > n0.

Informal rule of “dropping lower-order terms” also
follows:

n2 + 40n
?
∈ O(n2)

Notice that:
n2 + 40n ≤ n2 + 40n2 = 41n2

Choose c = 41, n0 = 1, clearly
n2 + 40n ≤ 41n2 for all n > 1

Big O Describes an Upper Bound

Big O is loosely analogous to ≤
All of these statements are true:
n2 ∈ O(n2)
n2 ∈ O(n4)
n2 ∈ O(n!)
...
2n2 ∈ O(n2)

Upper Bounds

Big-O descriptions are imprecise in two different ways:
No constants or lower-order terms

GOOD: fewer distractions

Only provides an upper bound. Correct to say an
algorithm requires O(n3) steps, even if it only requires n
steps.

UNFORTUNATE: conveys an incomplete analysis

Upper Bounds

Big-O descriptions are imprecise in two different ways:
No constants or lower-order terms

GOOD: fewer distractions

Only provides an upper bound. Correct to say an
algorithm requires O(n3) steps, even if it only requires n
steps.

UNFORTUNATE: conveys an incomplete analysis

Socrative Quiz!

Alyce is working on the analysis of a complex algorithm for
finding sequence matches in a DNA database. She can easily
show that the algorithm requires no more than n2 + n
base-pair comparisons in the worst case. She hopes to show
that the algorithm requires at most n log n + n comparisons.
How should Alyce describe the running time of the algorithm
given the current state of her analysis?
A) O(n3)
B) O(n2 + n)
C) O(n2)
D) O(n log n + n)
E) O(n)

Big Omega

Big Ω

For T (n) a non-negative function, T (n) ∈ Ω(f (n)) if and only
if there exist positive constants c and n0 such that

T (n) ≥ cf (n) for all n > n0.

Big Ω is loosely analogous to ≥
All of these statements are true:
n2 ∈ Ω(n2)
n4 ∈ Ω(n2)
n! ∈ Ω(n2)
...
n2 ∈ Ω(2n2)

Big Theta

Big Θ

f (n) ∈ θ(g(n)) iff,

f (n) ∈ O(g(n)) and f (n) ∈ Ω(g(n))

Big Θ is loosely analogous to =

Which of these statements are true?

n2
?
∈ Θ(n2)

2n2
?
∈ Θ(n2)

n2
?
∈ Θ(n4)

5n2 + 2n
?
∈ Θ(4n3)

Big Theta

Big Θ

f (n) ∈ θ(g(n)) iff,

f (n) ∈ O(g(n)) and f (n) ∈ Ω(g(n))

Big Θ is loosely analogous to =

Which of these statements are true?
n2 ∈ Θ(n2)
2n2 ∈ Θ(n2)
n2 6∈ Θ(n4)
5n2 + 2n 6∈ Θ(4n3)

Socrative Quiz

What relationship(s) is(are) illustrated by the following figure?

A) f (n) ∈ O(g(n))
B) f (n) ∈ Ω(g(n))
C) f (n) ∈ Θ(g(n))
D) g(n) ∈ O(f (n))
E) g(n) ∈ Ω(f (n))
F) g(n) ∈ Θ(f (n))
G) A, B and C are all correct
H) D, E and F are all correct

Alternate Definition of Big-O

Big O

f (n) ∈ O(g(n)) if

lim
n→∞

f (n)

g(n)
= c <∞

where c is some constant (possibly 0)

Alternate Definitions of Big-O

Big O

f (n) ∈ O(g(n)) if

lim
n→∞

f (n)

g(n)
= c <∞

where c is some constant (possibly 0)

n3 + 2n ∈ n3

lim
n→∞

n3 + 2n

n3
= lim

n→∞
1 +

2

n2
= 1

Alternate Definitions of Big-O

Big O

f (n) ∈ O(g(n)) if

lim
n→∞

f (n)

g(n)
= c <∞

where c is some constant (possibly 0)

n3 + 2n ∈ n3

lim
n→∞

n3 + 2n

n3
= lim

n→∞
1 +

2

n2
= 1

Alternate Definitions of O, Ω, Θ

Big Ω

f (n) ∈ Ω(g(n)) if

lim
n→∞

f (n)

g(n)
= c > 0

where c is some constant (possibly ∞)

Alternate Definitions of O, Ω, Θ

Big Θ

f (n) ∈ Θ(g(n)) if

lim
n→∞

f (n)

g(n)
= c , 0 < c <∞

where c is some constant.

Algorithm Analysis Algorithm

STEP 1: Select a measure of input size and a basic
operation

STEP 2: Develop a function T (n) that describes the
number of times the basic operation occurs as a function
of input size

STEP 3: Describe T (n) using order notation (Big-O)

Big-O for an upper bound
“The algorithm is at least this fast!”

Big-Ω for a lower bound
“The algorithm is at least this slow!”

Big-Θ for both upper and lower bound

A Complication

Let’s analyze this algorithm:

1 public static boolean contains(int target ,

2 int[] numbers) {

3 for (int number : numbers) {

4 if (number == target) {

5 return true;

6 }

7 }

8 return false;

9 }

Best, Worst, Average Case

1 public static boolean contains(int target ,

2 int[] numbers) {

3 for (int number : numbers) {

4 if (number == target) {

5 return true;

6 }

7 }

8 return false;

9 }

Best Case: 1 comparison, O(1)

Worst Case: n comparisons, O(n)

Average Case: n+1
2

comparisons, O(n)

Refined Algorithm Analysis Algorithm

STEP 1: Decide on best, worst, or average case analysis

STEP 2: Select a measure of input size and a basic
operation

STEP 3: Find a function T (n) that describes the number
of times the basic operation occurs

STEP 4: Describe T (n) using order notation:

Big-O for an upper bound
“The algorithm is at least this fast!”

Big-Ω for a lower bound
“The algorithm is at least this slow!”

Big-Θ for both upper and lower bound

Socrative Quiz (1)

What is the exact growth function for the following code
snippet, using “+=” as the basic operation and the length of
numbers as the input size?

public static int someFunc1(int\[\] numbers) {

int sum = 0;

for (int num : numbers) {

sum += num;

for (int i = 0; i < 20; i++) {

sum += i;

}

}

return sum;

}

A) T (n) = n
B) T (n) = 20
C) T (n) = 21n
D) T (n) = n + 20
E) None of the above

Socrative Quiz

How should we describe the running time of the following code
snippet?
public static int someFunc1(int[] numbers) {

int sum = 0;

for (int num : numbers) {

sum += num;

for (int i = 0; i < 20; i++) {

sum += i;

}

}

return sum;

}

A) O(n)
B) Ω(n)
C) Θ(n)
D) O(21n)
E) Ω(21n)
F) Θ(21n)

Quiz

Input size? Basic operation? Exact growth function?

Big-O, Ω, Θ?

1 public static int someFunc2(int[] numbers) {

2 int sum = 0;

3 int index = 1;

4

5 while (index < numbers.length) {

6 sum += numbers[index];

7 index *= 2;

8 }

9

10 return sum;

11 }

Quiz

Input size? Basic operation? Exact growth function?
Big-O, Ω, Θ?

1 public static int someFunc3(int[] numbers) {

2 int sum = 0;

3 int index = 1;

4

5 while (index < numbers.length) {

6 sum += numbers[index];

7 index *= 2;

8

9 for (int i = 0; i < numbers.length; i++) {

10 sum += i;

11 }

12 }

13 return sum;

14 }

L’Hôpital’s Rule

L’Hôpital’s Rule

If lim
n→∞

f (n) = lim
n→∞

g(n) =∞ and f ′(n) and g ′(n) exist, then

lim
n→∞

f (n)

g(n)
= lim

n→∞

f ′(n)

g ′(n)

L’Hôpital Example

n log2 n
?
∈ O(n2)

lim
n→∞

n log2 n

n2
= lim

n→∞

log2 n

n

= lim
n→∞

ln n

n ln 2
(Recall that logb(n) =

logk n

logk b
)

Apply L’Hôpital’s rule:

= lim
n→∞

1
n

ln 2
(Recall that d

dx
ln x = 1/x)

= lim
n→∞

1

n ln 2
= 0

L’Hôpital Example

n log2 n
?
∈ O(n2)

lim
n→∞

n log2 n

n2
= lim

n→∞

log2 n

n

= lim
n→∞

ln n

n ln 2
(Recall that logb(n) =

logk n

logk b
)

Apply L’Hôpital’s rule:

= lim
n→∞

1
n

ln 2
(Recall that d

dx
ln x = 1/x)

= lim
n→∞

1

n ln 2
= 0

L’Hôpital Example

n log2 n
?
∈ O(n2)

lim
n→∞

n log2 n

n2
= lim

n→∞

log2 n

n

= lim
n→∞

ln n

n ln 2
(Recall that logb(n) =

logk n

logk b
)

Apply L’Hôpital’s rule:

= lim
n→∞

1
n

ln 2
(Recall that d

dx
ln x = 1/x)

= lim
n→∞

1

n ln 2
= 0

L’Hôpital Example

n log2 n
?
∈ O(n2)

lim
n→∞

n log2 n

n2
= lim

n→∞

log2 n

n

= lim
n→∞

ln n

n ln 2
(Recall that logb(n) =

logk n

logk b
)

Apply L’Hôpital’s rule:

= lim
n→∞

1
n

ln 2
(Recall that d

dx
ln x = 1/x)

= lim
n→∞

1

n ln 2
= 0

L’Hôpital Example

n log2 n
?
∈ O(n2)

lim
n→∞

n log2 n

n2
= lim

n→∞

log2 n

n

= lim
n→∞

ln n

n ln 2
(Recall that logb(n) =

logk n

logk b
)

Apply L’Hôpital’s rule:

= lim
n→∞

1
n

ln 2
(Recall that d

dx
ln x = 1/x)

= lim
n→∞

1

n ln 2
= 0

What If We Want to Show That f(n) is NOT

O(g(n))

Easiest approach is usually to show:

lim
n→∞

f (n)

g(n)
=∞

OpenDSA Question

Suppose that a particular algorithm has time complexity T (n) = 3× 2n

and that executing an implementation of it on a particular machine takes

t seconds for n inputs. Now suppose that we are presented with a

machine that is 64 times as fast. How many inputs could we process on

the new machine in t seconds?

OpenDSA Question

Let’s call the input size we could handle before nold . The number of
steps we completed in t seconds was: 3× 2nold .

Since our new computer is 64 times faster, the number of steps we
can perform in t seconds is now 64× 3× 2nold

Our complexity function tells us that steps = 3× 2n, we can solve
for size (n):

s = 3× 2n

s/3 = 2n

log2(s/3) = n

n = log2(s/3)

OpenDSA Question

Now we plug in our step budget for s:

n = log2(64×3×2nold
3)

n = log2(64× 2nold)

n = log2(26 × 2nold)

n = log2(2nold+6)

n = nold + 6

