CS 240 Fall 2017 Hashing Activity

Name:	Teammates:	
rvaille.	1501111110153.	

For this activity, we will be using the following polynomial hash code for strings:

$$h(k) = a \cdot c_1 + a^2 \cdot c_2 + a^3 \cdot c_3 + ... + a^m \cdot c_m$$
 and $a = 3$.

Character values should use the following case-insensitive conversions:

Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S	Т	U	٧	W	Х	Υ	Ζ
65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90

For example
$$h('foo') = 3.70 + 3^2.79 + 3^3.79 = 3054$$
.

For all of the hash table examples, we will use the following compression function:

$$h'(k) = h(k) \% 7$$

For example,
$$h'("f") = h("f") \% 7 = 210 \% 7 = 0$$
.

Thus, the key-value pair ("f", 3) would be hashed into bucket 0 (the first bucket).

For integers we will use the hash code h(k)=k.

Calculating Hash Codes

1. Calculate the hash codes for the following keys:

Hash Table w/ Open Addressing (Chaining)

2. Insert the following key-value pairs into the following hash table. Apply chaining to resol	lve
collisions. What is the load factor, calculated to two decimal places?	

- 1				

Hash Tables w/ Probing

3. Insert the following key-value pairs into the following hash table. Apply linear probing to resolve collisions. What is the load factor, calculated to two decimal places?

г				
- 1				
- 1				

4. Insert the following key-value pairs into the following hash table. Apply double hashing to resolve collisions. Recall that double hashing uses a probe sequence of the form $p(K,i)=i*h_2(k)$. In this case use $h_2=1+(k\%6)$. What is the load factor, calculated to two decimal places?

ſ				

Challenge (Optional) – Rehashing

The hash table from problem 3 is nearly full. Assume that it is expanded to a new size of 17 buckets. Re-hash all key-value pairs from problem 3 using the following new compression function:

$$h'(k) = h(k) \% 17$$

Are there any collisions?

What is the new load factor?