Nathan Sprague

September 5, 2017

Alternate Definition of Big-O

f(n) € O(g(n)) if
f(n)

lim —% =c< >
n—00 g(n)

where c is some constant (possibly 0)

Alternate Definitions of Big-O

f(n) € O(g(n)) if

im m =c< o0
n'%o gln) °°

where c is some constant (possibly 0)

mnP+2nend

Alternate Definitions of Big-O

f(n) € O(g(n)) if

im m =c< o0
n'%o gln) °°

where c is some constant (possibly 0)

mnP+2nend

340 2
im T im1e S =1

n—o0 n n—o00 n2

Alternate Definitions of O, 2, ©

f(n) € Q(g(n)) if
f(n)

im —==c¢c>0
n—o0 g(n)

where c is some constant (possibly co)

Alternate Definitions of O, 2, ©

f(n) € ©(g(n)) if
f(n)

lim —5 =c¢,0< c <
n—o0 g(n)

where c is some constant.

A Complication

© 0 N o A W N

m Let's analyze this algorithm:

public static boolean contains(int target,
int [] numbers)

for (int number : numbers) {

if (number == target) {

return true;

}
}
return false;

}

Best, Worst, Average Case

public static boolean contains(int target,
int [numbers) {

for (int number : numbers) {

if (number == target) {

return true;

}
}
return false;

3

© o N o A W N

m Best Case: 1 comparison, O(1)

m Worst Case: n comparisons, O(n)

m Average Case: “EL comparisons, O(n)

Refined Algorithm Analysis Algorithm

m STEP 1: Decide on best, worst, or average case analysis

m STEP 2: Select a measure of input size and a basic
operation

m STEP 3: Find a function T(n) that describes the number
of times the basic operation occurs
m STEP 4: Describe T(n) using order notation:
m Big-O for an upper bound
“The algorithm is at least this fast!”
m Big-Q for a lower bound
“The algorithm is at least this slow!”
m Big-© for both upper and lower bound

L'"Hopital’s Rule

L'Hopital’'s Rule

If lim f(n) = lim g(n) = oo and f’(n) and g’(n) exist, then
n—oo

n—o0

(n) f'(n)

nll—[go m - nll—[go g’ (n)

L'Hopital Example

?
m nlog, n € O(n?)

L'Hopital Example

?
m nlog, n € O(n?)
. nlogyn . logyn
m lim = lim
n—o00 n2 n—o0 n

L'Hopital Example

?
m nlog, n € O(n?)

. nlogyn . logyn
m lim >— = lim
n—o00 n n—o0 n
Inn log, n
= |im Recall that log,(n) =
im 2 &5(M) = {0g, b’

L'Hopital Example

?
nlog, n € O(n?)

m
nlog, n . log, n
m |lim g22 = |lim &
n—o00 n n—o0 n
Inn log, n
=1 Recall that lo =
== Jim e &5(M) = {0g, b’
m Apply L'Hopital’s rule:

1

= nIi_)rgo Inn2 (Recall that < Inx = 1/x)

L'Hopital Example

?
nlog, n € O(n?)

m
. nlog,n . log, n
m |lim g22 = |lim &
n—o00 n n—o0 n
Inn log, n
B = |lim Recall that log,(n) =
im 2 &5(M) = {0g, b’

m Apply L'Hopital’s rule:
1

— n d _
m= n||_>r20 - (Recall that - Inx = 1/x)
B = lim =0

n—oco nln2

What If We Want to Show That f(n) is NOT

O(g(n))

m Easiest approach is usually to show:

[im —=% =
n|—>rgo g(n) o0

OpenDSA Question

Suppose that a particular algorithm has time complexity T(n) =3 x 2"
and that executing an implementation of it on a particular machine takes
t seconds for n inputs. Now suppose that we are presented with a
machine that is 64 times as fast. How many inputs could we process on
the new machine in t seconds?

OpenDSA Question

Let's call the input size we could handle before nyy. The number of
steps we completed in t seconds was: 3 x 2",

Since our new computer is 64 times faster, the number of steps we
can perform in t seconds is now 64 x 3 x 2"

Our complexity function tells us that steps = 3 x 2", we can solve
for size (n):

s=3x2"
s/3=2"

log,(s/3) = n
n = logy(s/3)

OpenDSA Question

Now we plug in our step budget for s:

Nold
- n:log 64><3><2o)

e

B n = log,(64 x 2")
B n=log,(2° x 2m)
B n = log,(2m+C)

B Nn=nyy+6

