CS240

Nathan Sprague

October 17, 2014

Preamble: Summations

- What is the average case running time of sequential search?
- Average cost = $\frac{\text{Sum over cost of all possible cases}}{\# \text{ possible cases}}$
- Assume a successful search, all locations equally likely...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Average Cost of Sequential Search

Useful summation:
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

Average Cost:

$$\frac{\frac{1+2+...+n}{n}}{\frac{\sum_{i=1}^{n}i}{n}} = \frac{\frac{n(n+1)/2}{n}}{\frac{n}{2}} = \frac{(n+1)}{2}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Another Useful Summation

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Counting Activations With Recurrences

```
Draw a recursion trace for split(3):
```

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Counting Activations With Recurrences

```
Draw a recursion trace for split(3):
```

<pre>def split(n):</pre>
if n == 0:
return 1
else:
<pre>return split(n - 1) + split(n - 1)</pre>

$$F(0) = 1$$

 $F(n) = 2F(n-1) + 1$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Counting Operations

6

7

More typically, we want to count the number of steps taken by a recursive algorithm:

```
def split1(n):
1
      for i in range (n + 2):
2
           do_something() # We need to count this!
3
      if n == 0:
4
           return 1
5
      else:
           return split1(n - 1) + split1(n - 1)
```

Counting Operations

More typically, we want to count the number of steps taken by a recursive algorithm:

```
def split1(n):
1
      for i in range (n + 2):
2
           do_something() # We need to count this!
3
      if n == 0:
4
           return 1
5
      else:
           return split1(n - 1) + split1(n - 1)
```

$$F(0) = 2$$

 $F(n) = 2F(n-1) + n + 2$

6

ANALYZING RECURSION: STAGE 1 - Develop a Recurrence

- Develop a recurrence relation that describes the number of times the basic operation occurs in the worst (best, average) case:
- Typically:

Initial Conditions

 $T(size_of_base_case) = #operations_required_for_base_case$

Recurrence Relation

 $T(n) = \# recursive_calls \times T(size_of_calls) + \# operations_in_call$

Recursive Warm-Up

```
def fun3(n)
1
       if n == 0:
2
           return 20
3
       else:
4
           result = 0
5
           for i in range(4):
6
               result += 1
7
           return result + fun3(n - 1)
8
```

Let's develop an equation describing how many additions will be performed:

T(0) = ??T(n) = ??

Recurrences

We can express this as a recurrence :

```
def fun3(n)
1
       if n == 0:
2
             return 20
3
       else:
4
            result = 0
5
            for i in range(4):
6
               result += 1
7
            return result + fun3(n-1)
8
```

Let's develop an equation describing how many additions will be performed:

T(0) = 0T(n) = 5 + T(n-1)

Recurrence Exercise

Develop a recurrence that describes the number of additions:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

STAGE 2 - Solve the Recurrence

- One approach is the method of back substitution:
 - Expand the recurrence by repeated substitution until a pattern emerges.
 - 2 Characterize the pattern by expressing the recurrence in terms of *n* and *i*, (where *i* is the number of substitutions).
 - **3** Substitute for *i* an expression that will remove the recursive term.
 - 4 Manipulate the result to achieve a closed-form solution.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

STAGE 3 Check Your Answer

Make sure that the recurrence and the closed form solution agree for several values of *n*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Example: Recursive Binary Search, Stage 1

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Worst-case recurrence: W(1) = 1W(n) = W(n/2) + 1

Example: Recursive Binary Search, Stage 2

Backwards substitution: W(1) = 1W(n) = W(n/2) + 1W(n) = W((n/2)/2) + 1 + 1(substitute) W(n) = W(n/4) + 1 + 1(simplify) W(n) = W((n/4)/2) + 1 + 1 + 1(substitute) W(n) = W(n/8) + 1 + 1 + 1(simplify) . . . $W(n) = W(\frac{n}{2i}) + i$ (generalize) Solve for *i* that results in initial condition: $\frac{n}{2i} = 1$ $n = 2^i$ $i = \log_2 n$ Substitute $\log_2 n$ for *i*: $W(n) = \log_2 n + 1$

Example: Recursive Binary Search, Stage 3

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Applying recurrence:

$$W(1) = 1$$

 $W(2) = W(1) + 1 = 1 + 1 = 2$
 $W(4) = W(2) + 1 = 2 + 1 = 3$

Applying solution: $W(1) = \log_2 1 + 1 = 0 + 1 = 1$ $W(2) = \log_2 2 + 1 = 1 + 1 = 2$ $W(4) = \log_4 4 + 1 = 2 + 1 = 3$

Another Example

```
(Assume items starts with an even length.)
```

```
1 def fun(items):
2     if len(items) <= 1:
3         return basic_operation()
4     else:
5         basic_operation()
6         return fun(items[2:]) # slice size is n-2
```

STAGE 1

1	lef fun(items):	
2	<pre>if len(items) <= 1:</pre>	
3	<pre>return basic_operation()</pre>	
4	else:	
5	<pre>basic_operation()</pre>	
6	<pre>return fun(items[2:]) # slice size is n.</pre>	-2

Initial Conditions:

$$T(0) = 1$$

 $T(1) = 1$

Recursive part:

$$T(n) = T(n-2) + 1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

STAGE 2

Substitution:

$$T(n) = T(n-2) + 1$$

 $T(n) = T((n-2) - 2) + 1 + 1$ (substitute)
 $T(n) = T(n-4) + 1 + 1$ (substitute)
 $T(n) = T((n-4) - 2) + 1 + 1 + 1$ (substitute)
 $T(n) = T(n-6) + 1 + 1 + 1$ (substitute)
...
 $T(n) = T(n-2i) + i$

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ○ ○ ○ ○

STAGE 2 (Continued)

Recursive term disappears when n - 2i = 0 or n - 2i = 1 (The first will apply for even *n*, the second will apply for odd *n*.) n - 2i = 0i = n/2

Substitute n/2 for *i*: T(n) = n/2 + 1For even n.

Similarly, $T(n) = \frac{n-1}{2} + 1$ for odd n.

Recurrence Exercise

```
def fun(items):
1
       n = len(items)
2
       if n <= 1:
3
            return 3
4
       for i in range(4):
5
            mid = n / / 2
6
            fun(items[:mid])
7
       s_{11}m = 0
8
       for i in range(n):
9
            for j in range(n):
10
                 sum = items[i] + items[j]
11
       return sum
12
```


$$T(1) = 0$$

$$T(n) = 4T(n/2) + n^2$$

Solving With Backward Substitution

$$T(1) = 0$$

$$T(n) = 4T(\frac{n}{2}) + n^{2}$$

$$T(n) = 4(4T(\frac{n}{2}/2) + (\frac{n}{2})^{2}) + n^{2}$$
 (substitute)

$$T(n) = 16T(\frac{n}{4}) + n^{2} + n^{2}$$
 (substitute)

$$T(n) = 16(4T(\frac{n}{4}/2) + (\frac{n}{4})^{2}) + n^{2} + n^{2}$$
 (substitute)

$$T(n) = 64T(\frac{n}{8}) + n^{2} + n^{2} + n^{2}$$
 (substitute)

$$T(n) = 4^{i}T(\frac{n}{2i}) + i \times n^{2}$$
 (generalize)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solve for *i* that results in initial condition: $\frac{n}{2^{i}} = 1$ $i = \log_{2} n$ Substitute $\log_{2} n$ for *i*: $T(n) = n^{2} \log_{2} n$

Checking The Answer

Applying recurrence:

$$T(1) = 0$$

 $T(2) = 2^2 + 4T(1) = 4 + 4(0) = 4$
 $T(4) = 4^2 + 4T(2) = 16 + 4(4) = 32$

Applying solution:

$$T(1) = 1^2 \times \log_2 1 = 1 \times 0 = 0$$

 $T(2) = 2^2 \times \log_2 2 = 4 \times 1 = 4$
 $T(4) = 4^2 \times \log_2 4 = 16 \times 2 = 32$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>