
CS240

Nathan Sprague

October 17, 2014

Preamble: Summations

What is the average case running time of sequential
search?

Average cost = Sum over cost of all possible cases
possible cases

Assume a successful search, all locations equally likely...

Average Cost of Sequential Search

Useful summation:
n∑

i=1

i =
n(n + 1)

2

Average Cost:

1 + 2 + ... + n

n
=∑n

i=1 i

n
=

n(n + 1)/2

n
=

(n + 1)

2

Another Useful Summation

n∑
i=0

2i = 2n+1 − 1

Counting Activations With Recurrences

Draw a recursion trace for split(3):

1 def split(n):

2 if n == 0:

3 return 1

4 else:

5 return split(n - 1) + split(n - 1)

F (0) = 1
F (n) = 2F (n − 1) + 1

Counting Activations With Recurrences

Draw a recursion trace for split(3):

1 def split(n):

2 if n == 0:

3 return 1

4 else:

5 return split(n - 1) + split(n - 1)

F (0) = 1
F (n) = 2F (n − 1) + 1

Counting Operations

More typically, we want to count the number of steps taken by
a recursive algorithm:

1 def split1(n):

2 for i in range(n + 2):

3 do_something () # We need to count this!

4 if n == 0:

5 return 1

6 else:

7 return split1(n - 1) + split1(n - 1)

F (0) = 2
F (n) = 2F (n − 1) + n + 2

Counting Operations

More typically, we want to count the number of steps taken by
a recursive algorithm:

1 def split1(n):

2 for i in range(n + 2):

3 do_something () # We need to count this!

4 if n == 0:

5 return 1

6 else:

7 return split1(n - 1) + split1(n - 1)

F (0) = 2
F (n) = 2F (n − 1) + n + 2

ANALYZING RECURSION: STAGE 1 - Develop a

Recurrence

Develop a recurrence relation that describes the number of
times the basic operation occurs in the worst (best, average)
case:

Typically:

Initial Conditions

T (size of base case) = #operations required for base case

Recurrence Relation

T (n) = #recursive calls × T (size of calls) + #operations in call

Recursive Warm-Up

1 def fun3(n)

2 if n == 0:

3 return 20

4 else:

5 result = 0

6 for i in range (4):

7 result += 1

8 return result + fun3(n - 1)

Let’s develop an equation describing how many additions will
be performed:
T(0) = ??
T(n) = ??

Recurrences

We can express this as a recurrence :

1 def fun3(n)

2 if n == 0:

3 return 20

4 else:

5 result = 0

6 for i in range (4):

7 result += 1

8 return result + fun3(n-1)

Let’s develop an equation describing how many additions will
be performed:
T (0) = 0
T (n) = 5 + T (n − 1)

Recurrence Exercise

Develop a recurrence that describes the number of additions:

1 def fun3(n)

2 if n == 0:

3 return 20

4 else:

5 result = 2 * n

6 return result - (fun3(n-1) + fun3(n-1))

STAGE 2 - Solve the Recurrence

One approach is the method of back substitution:

1 Expand the recurrence by repeated substitution until a
pattern emerges.

2 Characterize the pattern by expressing the recurrence in
terms of n and i , (where i is the number of
substitutions).

3 Substitute for i an expression that will remove the
recursive term.

4 Manipulate the result to achieve a closed-form solution.

STAGE 3 Check Your Answer

Make sure that the recurrence and the closed form
solution agree for several values of n.

Example: Recursive Binary Search, Stage 1

Worst-case recurrence:
W (1) = 1
W (n) = W (n/2) + 1

Example: Recursive Binary Search, Stage 2

Backwards substitution:
W (1) = 1
W (n) = W (n/2) + 1

W (n) = W ((n/2)/2) + 1 + 1 (substitute)
W (n) = W (n/4) + 1 + 1 (simplify)

W (n) = W ((n/4)/2) + 1 + 1 + 1 (substitute)
W (n) = W (n/8) + 1 + 1 + 1 (simplify)
...
W (n) = W (n

2i
) + i (generalize)

Solve for i that results in initial condition:
n
2i

= 1

n = 2i

i = log2 n
Substitute log2 n for i : W (n) = log2 n + 1

Example: Recursive Binary Search, Stage 3

Applying recurrence:
W (1) = 1
W (2) = W (1) + 1 = 1 + 1 = 2
W (4) = W (2) + 1 = 2 + 1 = 3

Applying solution:
W (1) = log2 1 + 1 = 0 + 1 = 1
W (2) = log2 2 + 1 = 1 + 1 = 2
W (4) = log4 4 + 1 = 2 + 1 = 3

Another Example

(Assume items starts with an even length.)

1 def fun(items):

2 if len(items) <= 1:

3 return basic_operation ()

4 else:

5 basic_operation ()

6 return fun(items [2:]) # slice size is n-2

STAGE 1

1 def fun(items):

2 if len(items) <= 1:

3 return basic_operation ()

4 else:

5 basic_operation ()

6 return fun(items [2:]) # slice size is n-2

Initial Conditions:
T (0) = 1

T (1) = 1

Recursive part:
T (n) = T (n − 2) + 1

STAGE 2

Substitution:
T (n) = T (n − 2) + 1

T (n) = T ((n − 2) − 2) + 1 + 1 (substitute)
T (n) = T (n − 4) + 1 + 1 (simplify)

T (n) = T ((n − 4) − 2) + 1 + 1 + 1 (substitute)
T (n) = T (n − 6) + 1 + 1 + 1 (simplify)
...
T (n) = T (n − 2i) + i

STAGE 2 (Continued)

Recursive term disappears when n− 2i = 0 or n− 2i = 1 (The
first will apply for even n, the second will apply for odd n.)
n − 2i = 0
i = n/2

Substitute n/2 for i :
T (n) = n/2 + 1
For even n.

Similarly, T (n) = n−1
2

+ 1 for odd n.

Recurrence Exercise

1 def fun(items):

2 n = len(items)

3 if n <= 1:

4 return 3

5 for i in range (4):

6 mid = n // 2

7 fun(items[:mid])

8 sum = 0

9 for i in range(n):

10 for j in range(n):

11 sum = items[i] + items[j]

12 return sum

Recurrence

T (1) = 0

T (n) = 4T (n/2) + n2

Solving With Backward Substitution

T (1) = 0
T (n) = 4T (n2) + n2

T (n) = 4(4T (n2/2) + (n2)
2) + n2 (substitute)

T (n) = 16T (n4) + n2 + n2 (simplify)

T (n) = 16(4T (n4/2) + (n4)
2) + n2 + n2 (substitute)

T (n) = 64T (n8) + n2 + n2 + n2 (simplify)

...
T (n) = 4iT (n

2i
) + i × n2 (generalize)

Solve for i that results in initial condition:
n
2i

= 1
i = log2 n
Substitute log2 n for i : T (n) = n2 log2 n

Checking The Answer

Applying recurrence:
T (1) = 0
T (2) = 22 + 4T (1) = 4 + 4(0) = 4
T (4) = 42 + 4T (2) = 16 + 4(4) = 32

Applying solution:
T (1) = 12 × log2 1 = 1 × 0 = 0
T (2) = 22 × log2 2 = 4 × 1 = 4
T (4) = 42 × log2 4 = 16 × 2 = 32

