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Preamble: Summations

m What is the average case running time of sequential
search?

Sum over cost of all possible cases
# possible cases

m Assume a successful search, all locations equally likely...

m Average cost =




Average Cost of Sequential Search

d 1
Useful summation: Zi: n(n+1)
i=1
Average Cost:
1+24...+n B
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n(n+1)/2 (n+1)

n - 2




Another Useful Summation

» 2=t o1

i=0



Counting Activations With Recurrences

Draw a recursion trace for split(3):

def split(m):
if n ==
return 1
else:
return split(mn - 1) + split(n - 1)
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Counting Activations With Recurrences
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Draw a recursion trace for split(3):

def split(m):
if n ==
return 1
else:
return split(mn - 1) + split(n - 1)




Counting Operations

More typically, we want to count the number of steps taken by
a recursive algorithm:

1 |def spliti(n):

2 for i in range(n + 2):

3 do_something () # We need to count this!
4 if n ==

5 return 1

6 else:

7

return splitli(n - 1) + spliti(n - 1)




Counting Operations

More typically, we want to count the number of steps taken by
a recursive algorithm:

1 |def spliti(n):

2 for i in range(n + 2):

3 do_something () # We need to count this!
4 if n ==

5 return 1

6 else

7 return splitli(n - 1) + spliti(n - 1)
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ANALYZING RECURSION: STAGE 1 - Develop a

Recurrence

m Develop a recurrence relation that describes the number of
times the basic operation occurs in the worst (best, average)
case:

m Typically:

Initial Conditions

T (size_of _base_case) = #operations_required_for_base_case

Recurrence Relation

T (n) = #recursive_calls x T (size_of _calls) + #operations_in_call




Recursive Warm-Up

def fun3(n)
if n ==
return 20
else:
result = 0
for i in range (4):
result += 1
return result + fun3(n - 1)

0 N o oA W N

Let's develop an equation describing how many additions will
be performed:

T(0) =77

T(n) =77



Recurrences

We can express this as a recurrence :

def fun3(n)
if n ==
return 20

else:
result = 0
for i in range (4):
result += 1
return result + fun3(n-1)
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Let's develop an equation describing how many additions will
be performed:

T(0)=0

T(n)=5+T(n—1)



Recurrence Exercise

Develop a recurrence that describes the number of additions:

def fun3(n)
if n ==

return 20
else:
result = 2 *x n
return result - (fun3(n-1) + fun3(n-1))
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STAGE 2

- Solve the Recurrence

=
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approach is the method of back substitution:
Expand the recurrence by repeated substitution until a
pattern emerges.

Characterize the pattern by expressing the recurrence in
terms of n and i, (where i is the number of
substitutions).

Substitute for i an expression that will remove the

recursive term.
Manipulate the result to achieve a closed-form solution.



STAGE 3 Check Your Answer

m Make sure that the recurrence and the closed form
solution agree for several values of n.



Example: Recursive Binary Search, Stage 1

Worst-case recurrence:
W) =1
W(n) = W(n/2) +1



Example: Recursive Binary Search, Stage 2

Backwards substitution:
W) =1
W(n/2)+1

W(n) =
(n) = W((n/2)/2) +1+1
(n)=W(n/4)+1+1

(n)=W((n/4)/2)+1+1+1
(n) =

w
w
w
w W(n/8)+1+1+1

W(n) =W(5)+i

Solve for i that results in initial condition:

i =logy n
Substitute log, n for i: W(n) =log, n+1

(substitute
(simplify

(substitute
(simplify

)
)
)
)

(generalize)



Example: Recursive Binary Search, Stage 3

Applying recurrence:

W(1)=1
W2)=w(l)+1=1+1=2
W@4)=WwW(R2)+1=2+1=3

Applying solution:

W(l)=log,1+1=0+1=1
W(2)=log,2+1=1+1=2
W(4)=log,4+1=2+1=3



Another Example

(Assume items starts with an even length.)

def fun(items):
if len(items) <= 1:
return basic_operation ()
else:
basic_operation ()
return fun(items[2:]) # slice size is n-2
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STAGE 1

def fun(items):
if len(items) <= 1:
return basic_operation ()
else:
basic_operation ()
return fun(items[2:]) # slice size is n-2
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Initial Conditions:
T(0)=1

T(1)=1

Recursive part:



STAGE 2

Substitution:
T(n)=T(n—-2)+1

T(n)=T((n—-2)—2)+1+1 (substitute)
T(n)=T(h—4)+1+1 (simplify)
T(n)=T(h—4)—-2)+1+1+1 (substitute)
T(n)=T(n—6)+1+1+1 (simplify)
T(n) = T(n—2i)+i



STAGE 2 (Continued)

Recursive term disappears when n—2i =0 or n—2i =1 (The
first will apply for even n, the second will apply for odd n.)
n—2i=0

i=n/2

Substitute n/2 for i:

T(n)=n/2+1

For even n.

Similarly, T(n) = 251 + 1 for odd n.



Recurrence Exercise

def fun(items):
n = len(items)
if n <= 1:
return 3
for i in range (4):
mid = n // 2
fun(items [:mid])
sum = 0
for i in range(n):
for j in range(mn):
sum = items[i] + items[j]
return sum
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Recurrence

T(1)=0

T(n)=4T(n/2) + n?



Solving With Backward Substitution

T(1)=0

T(n)=4T(5)+n?

T(n)=4(4T(5/2) +( ) ) + n? (substitute)
T(n)=16T(4 )+ n? + n? (simplify)
T(n)=16(4T(7/2) + (7 ) ) + n? + n? (substitute)
T(n)=64T(g )+n + n? + n? (simplify)
T(n) =4 T(&)+ixn? (generalize)
Solve for i that results in initial condition:

=1

i =logyn
Substitute log, n for i: T(n) = n?log, n



Checking The Answer

Applying recurrence:

T(1)=0
T(2)=224+4T(1)=4+4(0)=4
T(4)=42+4T(2) =16 +4(4) =32

Applying solution:
T(1)=12xlog,1=1x0=0
T(2)=22xlog,2=4x1=4
T(4) =42 xlog,4 =16 x 2 =32



