
CS240

Nathan Sprague

September 12, 2014



Algorithm Analysis

What should we measure?

clarity/simplicity?
space efficiency?
time efficiency?

A story...



Take-Home Messages (1/2)

Analysis must account for input size

How does the running time change as the input size
increases?



Take-Home Messages (2/2)

Goal is to analyze algorithms, not programs.

Running time of programs is subject to:

Programming language
Speed of the computer
Computer load
Compiler version
...



If Not Time, Then What?



If Not Time, Then What?

Number of steps that the algorithm takes to complete

Goal: develop a function that maps from input size to the
number of steps

Examples...

1 sum = 0

2 for num in numbers:

3 sum += num

1 sum = 0

2 for num1 in numbers:

3 for num2 in numbers:

4 sum += 1



Basic Operations

Goal restated: develop a function that maps from input
size to the number of times the “basic operation” is
performed

No single correct choice for basic operation

Guideline:

Should happen in inner-most loop

If chosen well, count will be proportional to execution
time



Growth/Complexity Functions

Let’s look at them...

Goal restated: Map our algorithm to a complexity
function



Big-O

Informal description: Growth functions are categorized
according to their dominant (fastest growing) term

Constants and lower-order terms are discarded

Examples:

10n ∈ O(n)
5n2 + 2n + 3 ∈ O(n2)
nlogn + n ∈ O(nlogn)



Why Drop the Constants?

Example...



Why Drop the Constants?

Despite constants, functions from slower growing classes
will always be faster eventually

Real goal is to understand the relative impact of
increasing input size

Side benefit: justifies flexibility in choosing basic
operation



Why Drop Lower Order Terms

Contribution of lower-order terms becomes insignificant
as input size increases

Example...



Formal Definition of Big-O

Big O

f (n) ∈ O(g(n)) iff there exists a real constant c > 0 and an
integer constant n0 ≥ 1 such that for all n ≥ n0,

f (n) ≤ cg(n)



Formal Definition of Big-O

Big O

f (n) ∈ O(g(n)) iff there exists a real constant c > 0 and an
integer constant n0 ≥ 1 such that for all n ≥ n0,

f (n) ≤ cg(n)

Informal rule of “dropping constants” follows
immediately:

50n
?
∈ O(n)

Yes! choose c = 50, n0 = 1, clearly
50n ≤ 50n for all n ≥ 1



Formal Definition of Big-O

Big O

f (n) ∈ O(g(n)) iff there exists a real constant c > 0 and an
integer constant n0 ≥ 1 such that for all n ≥ n0,

f (n) ≤ cg(n)

Informal rule of “dropping constants” follows
immediately:

50n
?
∈ O(n)

Yes! choose c = 50, n0 = 1, clearly
50n ≤ 50n for all n ≥ 1



Formal Definition of Big-O

Big O

f (n) ∈ O(g(n)) iff there exists a real constant c > 0 and an
integer constant n0 ≥ 1 such that for all n ≥ n0,

f (n) ≤ cg(n)

Informal rule of “dropping lower-order terms” also
follows:

n2 + 40n
?
∈ O(n2)

Notice that:
n2 + 40n ≤ n2 + 40n2 = 41n2

Choose c = 41, n0 = 1, clearly
n2 + 40n ≤ 41n2 for all n ≥ 1



Formal Definition of Big-O

Big O

f (n) ∈ O(g(n)) iff there exists a real constant c > 0 and an
integer constant n0 ≥ 1 such that for all n ≥ n0,

f (n) ≤ cg(n)

Informal rule of “dropping lower-order terms” also
follows:

n2 + 40n
?
∈ O(n2)

Notice that:
n2 + 40n ≤ n2 + 40n2 = 41n2

Choose c = 41, n0 = 1, clearly
n2 + 40n ≤ 41n2 for all n ≥ 1



Formal Definition of Big-O

Big O

f (n) ∈ O(g(n)) iff there exists a real constant c > 0 and an
integer constant n0 ≥ 1 such that for all n ≥ n0,

f (n) ≤ cg(n)

Informal rule of “dropping lower-order terms” also
follows:

n2 + 40n
?
∈ O(n2)

Notice that:
n2 + 40n ≤ n2 + 40n2 = 41n2

Choose c = 41, n0 = 1, clearly
n2 + 40n ≤ 41n2 for all n ≥ 1



Algorithm Analysis Algorithm

STEP 1: Select a measure of input size and a basic
operation

STEP 2: Develop a function T (n) that describes the
number of times the basic operation occurs as a function
of input size

STEP 3: Describe T (n) using order notation (Big-O)



Big O Describes an Upper Bound

Big O is loosely analogous to ≤
All of these statements are true:
n2 ∈ O(n2)
n2 ∈ O(n4)
n2 ∈ O(n!)
...
2n2 ∈ O(n2)



Big Omega

Big Ω

f (n) ∈ Ω(g(n)) iff there exists a real constant c > 0 and an
integer constant n0 ≥ 1 such that for all n ≥ n0,

f (n) ≥ cg(n)

Big Ω is loosely analogous to ≥
All of these statements are true:
n2 ∈ Ω(n2)
n4 ∈ Ω(n2)
n! ∈ Ω(n2)
...
n2 ∈ Ω(2n2)



Big Theta

Big Θ

f (n) ∈ θ(g(n)) iff,

f (n) ∈ O(g(n)) and f (n) ∈ Ω(g(n))

Big Θ is loosely analogous to =

Which of these statements are true?

n2
?
∈ Θ(n2)

2n2
?
∈ Θ(n2)

n2
?
∈ Θ(n4)

5n2 + 2n
?
∈ Θ(4n3)



Big Theta

Big Θ

f (n) ∈ θ(g(n)) iff,

f (n) ∈ O(g(n)) and f (n) ∈ Ω(g(n))

Big Θ is loosely analogous to =

Which of these statements are true?
n2 ∈ Θ(n2)
2n2 ∈ Θ(n2)
n2 6∈ Θ(n4)
5n2 + 2n 6∈ Θ(4n3)



Alternate Definitions of O, Ω, Θ

Big O

f (n) ∈ O(g(n)) if

lim
n→∞

f (n)

g(n)
= c <∞

where c is some constant (possibly 0)



Alternate Definitions of O, Ω, Θ

Big O

f (n) ∈ O(g(n)) if

lim
n→∞

f (n)

g(n)
= c <∞

where c is some constant (possibly 0)

n3 + 2n ∈ n3

lim
n→∞

n3 + 2n

n3
= lim

n→∞

(
1 +

2

n2

)
= lim

n→∞
1+ lim

n→∞

(
2

n2

)
= 1



Alternate Definitions of O, Ω, Θ

Big O

f (n) ∈ O(g(n)) if

lim
n→∞

f (n)

g(n)
= c <∞

where c is some constant (possibly 0)

n3 + 2n ∈ n3

lim
n→∞

n3 + 2n

n3
= lim

n→∞

(
1 +

2

n2

)
= lim

n→∞
1+ lim

n→∞

(
2

n2

)
= 1



Alternate Definitions of O, Ω, Θ

Big Ω

f (n) ∈ Ω(g(n)) if

lim
n→∞

f (n)

g(n)
= c > 0

where c is some constant (possibly ∞)



Alternate Definitions of O, Ω, Θ

Big Θ

f (n) ∈ Θ(g(n)) if

lim
n→∞

f (n)

g(n)
= c , 0 < c <∞

where c is some constant.



A Complication

Let’s analyze this algorithm:

1 def contains(key , numbers ):

2 for num in numbers:

3 if key == num:

4 return True

5 return False



Best, Worst, Average Case

1 def contains(key , numbers ):

2 for num in numbers:

3 if key == num:

4 return True

5 return False

Best Case: 1 comparison, O(1)

Worst Case: n comparisons, O(n)

Average Case: n+1
2

comparisons, O(n)



Refined Algorithm Analysis Algorithm

STEP 1: Decide on best, worst, or average case analysis

STEP 2: Select a measure of input size and a basic
operation

STEP 3: Find a function T (n) that describes the number
of times the basic operation occurs

STEP 4: Describe T (n) using order notation:

Big-O for an upper bound
“The algorithm is at least this fast!”

Big-Ω for a lower bound
“The algorithm is at least this slow!”

Big-Θ for both upper and lower bound



Quiz (1)

Input size?

Operation to count??

Growth function?

Big - Θ?

1 def some_func(values ):

2 sum = 0

3 for i in values:

4 sum += i

5 for i in range (20):

6 sum += i

7 return sum



Quiz (2)

Input size?

Operation to count??

Growth function?

Big - Θ?

1 def some_func(values ):

2 sum = 0

3 for i in values:

4 sum += i

5 for j in range (20):

6 sum += j

7 return sum



Quiz (3)

Input size?

Operation to count??

Growth function?

Big - Θ?

1 def some_func(values ):

2 sum = 0

3 indx = 1

4 while indx <= len(values ):

5 sum += values[indx - 1]

6 indx *= 2

7 return sum



Quiz (4)

1 def some_func(values ):

2 sum = 0

3

4 for i in range (1000):

5 sum = sum + i

6

7 for num in values:

8 indx = 1

9 while indx <= len(values ):

10 sum += values[indx - 1]

11 indx *= 2

12

13 return sum











L’Hôpital’s Rule

L’Hôpital’s Rule

If lim
n→∞

f (n) = lim
n→∞

g(n) =∞ and f ′(n) and g ′(n) exist, then

lim
n→∞

f (n)

g(n)
= lim

n→∞

f ′(n)

g ′(n)



L’Hôpital Example

n log2 n
?
∈ O(n2)

lim
n→∞

n log2 n

n2
= lim

n→∞

log2 n

n

= lim
n→∞

ln n

n ln 2
(Recall that logb(n) =

logk n

logk b
)

Apply L’Hôpital’s rule:

= lim
n→∞

1
n

ln 2
(Recall that d

dx
ln x = 1/x)

= lim
n→∞

1

n ln 2
= 0



L’Hôpital Example

n log2 n
?
∈ O(n2)

lim
n→∞

n log2 n

n2
= lim

n→∞

log2 n

n

= lim
n→∞

ln n

n ln 2
(Recall that logb(n) =

logk n

logk b
)

Apply L’Hôpital’s rule:

= lim
n→∞

1
n

ln 2
(Recall that d

dx
ln x = 1/x)

= lim
n→∞

1

n ln 2
= 0



L’Hôpital Example

n log2 n
?
∈ O(n2)

lim
n→∞

n log2 n

n2
= lim

n→∞

log2 n

n

= lim
n→∞

ln n

n ln 2
(Recall that logb(n) =

logk n

logk b
)

Apply L’Hôpital’s rule:

= lim
n→∞

1
n

ln 2
(Recall that d

dx
ln x = 1/x)

= lim
n→∞

1

n ln 2
= 0



L’Hôpital Example

n log2 n
?
∈ O(n2)

lim
n→∞

n log2 n

n2
= lim

n→∞

log2 n

n

= lim
n→∞

ln n

n ln 2
(Recall that logb(n) =

logk n

logk b
)

Apply L’Hôpital’s rule:

= lim
n→∞

1
n

ln 2
(Recall that d

dx
ln x = 1/x)

= lim
n→∞

1

n ln 2
= 0



L’Hôpital Example

n log2 n
?
∈ O(n2)

lim
n→∞

n log2 n

n2
= lim

n→∞

log2 n

n

= lim
n→∞

ln n

n ln 2
(Recall that logb(n) =

logk n

logk b
)

Apply L’Hôpital’s rule:

= lim
n→∞

1
n

ln 2
(Recall that d

dx
ln x = 1/x)

= lim
n→∞

1

n ln 2
= 0



What If We Want to Show That f(n) is NOT

O(g(n))

Easiest approach is usually to show:

lim
n→∞

f (n)

g(n)
=∞


