
CS240

Nathan Sprague

October 19, 2012

Analysis of Recursive Algorithms

STAGE 1 - Develop a Recurrence

Develop a recurrence relation that describes the number of
times the basic operation occurs in the worst (best, average)
case:

Typically:

Initial Conditions

T (size of base case) = #operations required for base case

Recurrence Relation

T (n) =
#operations in call +#recursive calls ×T (size of recursive calls)

STAGE 2 - Solve the Recurrence

One approach is the method of back substitution:

1 Expand the recurrence by repeated substitution until a
pattern emerges.

2 Characterize the pattern by expressing the recurrence in
terms of n and i , (where i is the number of
substitutions).

3 Substitute for i an expression that will remove the
recursive term.

4 Manipulate the result to achieve a closed-form solution.

STAGE 3 Check Your Answer

Make sure that the recurrence and the closed form
solution agree for several values of n.

Example: Recursive Binary Search, Stage 1

Worst-case recurrence:
W (1) = 1
W (n) = 1 + W (n/2)

Example: Recursive Binary Search, Stage 2

Backwards substitution:
W (1) = 1
W (n) = 1 +W (n/2)
W (n) = 1 + 1 +W ((n/2)/2) (substitute)
W (n) = 1 + 1 +W (n/4) (simplify)
W (n) = 1 + 1 + 1 +W (n/8)
...
W (n) = i +W (n

2i
) (generalize)

Solve for i that results in initial condition:
n
2i

= 1

n = 2i

i = log2 n
Substitute log2 n for i : W (n) = log2 n + 1

Example: Recursive Binary Search, Stage 3

Applying recurrence:
W (1) = 1
W (2) = 1 + W (1) = 1 + 1 = 2
W (4) = 1 + W (2) = 1 + 2 = 3

Applying solution:
W (1) = log2 1 + 1 = 0 + 1 = 1
W (2) = log2 2 + 1 = 1 + 1 = 2
W (4) = log4 4 + 1 = 2 + 1 = 3

Another Example

1 def fun(items):

2 if len(items) <= 1:

3 return basicOperation ()

4 else:

5 basicOperation ()

6 return fun(items [2:])

STAGE 1

1 def fun(items):

2 if len(items) <= 1:

3 return basicOperation ()

4 else:

5 basicOperation ()

6 return fun(items [2:])

Initial Conditions:
T (0) = 1

T (1) = 1

Recursive part:
T (n) = 1 + T (n − 2)

STAGE 2

Substitution:
T (n) = 1 + T (n − 2)
T (n) = 1 + 1 + T ((n − 2) − 2)
T (n) = 1 + 1 + T (n − 4)
T (n) = 1 + 1 + 1 + T (n − 6))
...
T (n) = i + T (n − 2i)

STAGE 2 (Continued)

Recursive term disappears when n− 2i = 0 or n− 2i = 1 (The
first will apply for even n, the second will apply for odd n.)
n − 2i = 0
i = n/2

Substitute n/2 for i :
T (n) = n/2 + 1
For even n.

Similarly, T (n) = n−1
2

+ 1 for odd n.

Recurrence Exercise

1 def fun(items):

2 n = len(items)

3 if n <= 1:

4 return 3

5 for i in range (4):

6 mid = n // 2

7 fun(items[:mid])

8 sum = 0

9 for i in range(n):

10 for j in range(n):

11 sum = items[i] + items[j]

12 return sum

Recurrence

T (1) = 0

T (n) = n2 + 4T (n/2)

Solving With Backward Substitution

T (1) = 0
T (n) = n2 + 4T (n2)
T (n) = n2 + 4((n2)

2 + 4T ((n2)/2)) (substitute)
T (n) = n2 + n2 + 16T (n4) (simplify)
T (n) = n2 + n2 + 16((n4)

2 + 4T (n/8)) (substitute)
T (n) = n2 + n2 + n2 + 64T (n/8) (simplify)
...
T (n) = i × n2 + 4iT (n

2i
) (generalize)

Solve for i that results in initial condition:
n
2i

= 1
i = log2 n
Substitute log2 n for i : T (n) = n2 log2 n

Checking The Answer

Applying recurrence:
T (1) = 0
T (2) = 22 + 4T (1) = 4 + 4(0) = 4
T (4) = 42 + 4T (2) = 16 + 4(4) = 32

Applying solution:
T (1) = 12 × log2 1 = 1 × 0 = 0
T (2) = 22 × log2 2 = 4 × 1 = 4
T (4) = 42 × log2 4 = 16 × 2 = 32

