Nathan Sprague

October 19, 2012

Analysis of Recursive Algorithms

STAGE 1 - Develop a Recurrence

m Develop a recurrence relation that describes the number of
times the basic operation occurs in the worst (best, average)
case:

m Typically:

Initial Conditions

T (size_of _base_case) = #operations_required _for_base_case

Recurrence Relation

T(n) =
#operations_in_call + #recursive_calls x T (size_of _recursive_calls)

STAGE 2

- Solve the Recurrence

=

[~

approach is the method of back substitution:
Expand the recurrence by repeated substitution until a
pattern emerges.

Characterize the pattern by expressing the recurrence in
terms of n and i, (where i is the number of
substitutions).

Substitute for i an expression that will remove the

recursive term.
Manipulate the result to achieve a closed-form solution.

STAGE 3 Check Your Answer

m Make sure that the recurrence and the closed form
solution agree for several values of n.

Example: Recursive Binary Search, Stage 1

Worst-case recurrence:
W) =1
W(n) =1+ W(n/2)

Example: Recursive Binary Search, Stage 2

Backwards substitution:

Ww(1)=1

W(n) =1+ W(n/2)
W(n) =141+ W((n/2)/2) (substitute)
W(n) =141+ W(n/4) (simplify)
W()=1+1+1+ W(n/8)

(n) =i+ W(3) (generalize)
Solve for i that results in initial condition:
o =1
n=2
i =logyn

Substitute log, n for i: W(n) =log, n+1

Example: Recursive Binary Search, Stage 3

Applying recurrence:

W(1)=1
W2)=1+W(@1)=1+1=2
Wé4)=1+W2)=1+2=3

Applying solution:

W(l)=log,1+1=0+1=1
W(2)=log,2+1=1+1=2
W(4)=log,4+1=2+1=3

Another Example

def fun(items):
if len(items) <= 1:
return basicOperation ()
else:
basicOperation ()
return fun(items[2:])

o A W N

STAGE 1

def fun(items):
if len(items) <= 1:
return basicOperation ()
else:
basicOperation ()
return fun(items[2:])

o A W N

Initial Conditions:
T(0)=1

T(1)=1

Recursive part:
T(n)=14+T(n—-2)

STAGE 2

Substitution:
T(n)=1+T(n-2)

T(n)=1+1+T((n—2)—-2)
T(n)=1+1+T(n—4)
T(n)=1+1+1+T(n—6))

T() =i+ T(n—2i)

STAGE 2 (Continued)

Recursive term disappears when n—2i =0 or n—2i =1 (The
first will apply for even n, the second will apply for odd n.)
n—2i=0

i=n/2

Substitute n/2 for i:

T(n)=n/2+1

For even n.

Similarly, T(n) = 251 + 1 for odd n.

Recurrence Exercise

def fun(items):
n = len(items)
if n <= 1:
return 3
for i in range (4):
mid = n // 2
fun(items [:mid])
sum = O
for i in range(n):
for j in range(mn):
sum = items[i] + items[j]
return sum

© 0 N o O B W N

=oe e
N R O

Recurrence

T(1)=0

T(n) = n® + 4T (n/2)

Solving With Backward Substitution

T(1)=0

() = +4T(5)

T(n) = +4((2)2 +4T((2)/2)) (substitute)
T(n)=n+n®+16T(2) (simplify)
T(n) = n? + n? +16((4)? + 4T(n/8)) (substitute)
T(n)=n?+n?+n®+64T(n/8) (simplify)
T(n)=ixn®>+ 4iT(§) (generalize)
Solve for i that results in initial condition:

=1

i =logyn

Substitute log, n for i: T(n) = n?log, n

Checking The Answer

Applying recurrence:

T(1)=0
T(2)=224+4T(1)=4+4(0)=4
T(4)=42+4T(2) =16 +4(4) =32

Applying solution:
T(1)=12xlog,1=1x0=0
T(2)=22xlog,2=4x1=4
T(4) =42 xlog,4 =16 x 2 =32

