
1Chapter 2: Arrays –
© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

The Python ListThe Python List

 A mutable sequence type container.
 Provides operations for managing the collection.
 Can grow and/or shrink as needed.
 Implemented using an array.

2Chapter 2: Arrays –
© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

List: ConstructionList: Construction

 The Python list interface provides an abstraction to
the actual underlying implementation.

pyList = [4, 12, 2, 34, 17]

3Chapter 2: Arrays –
© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

List: ImplementationList: Implementation

 An array is used to store the items of the list.
 Created larger than needed.
 The items are stored in a contiguous subset of the

array.

4Chapter 2: Arrays –
© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

List: Appending an ItemList: Appending an Item

 New items can be added at the end of the list.

 When space is available, the item is stored in the
next slot.

pyList.append(50)

5Chapter 2: Arrays –
© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

List: Appending an ItemList: Appending an Item

 What happens when the array becomes full?

 There is no space for value 6.

pyList.append(18)
pyList.append(64)
pyList.append(6)

6Chapter 2: Arrays –
© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Expanding The ArrayExpanding The Array

Step 1: create a new array, double the size.

Step 2: copy the items from original array to the new array.

7Chapter 2: Arrays –
© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Expanding The ArrayExpanding The Array

Step 3: replace the original array with the new array.

Step 4: store value 6 in the next slot of the new array.

8Chapter 2: Arrays –
© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Big-O Analysis of AppendBig-O Analysis of Append

● Best Case Analysis?
● Worst Case Analysis?
● More later...

9Chapter 2: Arrays –
© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

List: ExtendingList: Extending

 The entire contents of a list can be appended to a
second list.

pyListA = [34, 12]
pyListB = [4, 6, 31, 9]
pyListA.extend(pyListB)

10Chapter 2: Arrays –
© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Big-O Analysis of ExtendBig-O Analysis of Extend

● How should we measure input size?
● Best Case Analysis?
● Worst Case Analysis?

11Chapter 2: Arrays –
© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

List: Inserting ItemsList: Inserting Items

 An item can be inserted anywhere within the list.
pyList.insert(3, 79)

12Chapter 2: Arrays –
© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Big-O Analysis of InsertBig-O Analysis of Insert

● Best Case Analysis?
● Worst Case Analysis?

13Chapter 2: Arrays –
© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

List: Removing ItemsList: Removing Items

 An item can be removed from position of the list.
pyList.pop(0)

14Chapter 2: Arrays –
© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

List: Removing ItemsList: Removing Items

 Removing the last item in the list.
pyList.pop()

15Chapter 2: Arrays –
© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Big-O Analysis of RemoveBig-O Analysis of Remove

● Best Case Analysis?
● Worst Case Analysis?

16Chapter 2: Arrays –
© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

List: SlicesList: Slices

 Slicing a list creates a new list from a contiguous
subset of elements.

aSlice = pyList[2:5]

17Chapter 2: Arrays –
© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Big-O Analysis of SliceBig-O Analysis of Slice

● How do we measure input size?
● Best Case Analysis?
● Worst Case Analysis?

18Chapter 4: Algorithm Analysis
–

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Python List: Time-ComplexitiesPython List: Time-Complexities

List Operation Worst Case

v = list() ?

len(v) ?

v = [0] * n ?

v[i] = x ?

v.append(x) ?

v.extend(w) ?

v.insert(x) ?

v.pop() ?

traversal ?

19Chapter 4: Algorithm Analysis
–

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Python List: Time-ComplexitiesPython List: Time-Complexities

List Operation Worst Case

v = list() O(1)

len(v) O(1)

v = [0] * n O(n)

v[i] = x O(1)

v.append(x) O(n)

v.extend(w) O(n) or O(n + m)

v.insert(x) O(n)

v.pop() O(n)

traversal O(n)

20Chapter 2: Arrays –
© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Revisiting Analysis of AppendRevisiting Analysis of Append

● Best Case: O(1)
● Worst Case: O(n)
● How would we analyze this:

for item in input:
 myList.append(i)

21Chapter 4: Algorithm Analysis
–

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Amortized AnalysisAmortized Analysis

 Compute the time-complexity by finding the
average cost over a sequence of operations.
 Cost per operation must be known.
 Cost must vary, with

− many ops contributing little cost.
− only a few ops contributing high cost.

22Chapter 4: Algorithm Analysis
–

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Append ExampleAppend Example

23Chapter 2: Arrays –
© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Amoritized Cost of AppendAmoritized Cost of Append

● Total cost of resize operations:

● Total cost of set operations:

● Average cost of n append operations:

∑ j=0

lg n
2 j < 2n ∈ O(n)

∑i=1

n
1=n

∑ j=0

lgn
2 j+n

n
∈O(1)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

