
CS240

Nathan Sprague

November 30, 2012



(From Last Week)

Expected comparisons when simple linear probing is used:



Bit-Manipulation Based Hashing

If the size of a hash table is a power of two, division method
can use bitwise AND:

00001001 = 9
00000111 = 8-1
These are equivalent:

9 % 8 = 1
00001001 & 00000111 = 00000001 = 1

Why is that relevant?

Let’s time it...



C#/.net

Prime-number-sized tables.

Collision resolution: Double hashing.

Default load factor: .72
(http://msdn.microsoft.com/library/ms379571.aspx)



Ruby

Prime-number-sized tables.

Collision resolution: chaining

Default load factor: 5
Hash implementation in st.c. Ruby source can be downloaded from: http://www.ruby-lang.org/en/



Python Dictionary Implementation

Power-of-two table sizes.

Hash function: grab lower order bits (no effort to avoid
collisions)

Collision resolution: fancy double hashing:

Original hash j is modified according to:
j = ((5*j) + 1 + PERTURB)
PERTURB is initialized to the original hash, then bit-shifted
after every collision.
(All of this can be done with bit-level operators.)

Default load factor: 2/3

Implementation in: Python-2.7.2/Objects/dictobject.c. Source can be downloaded from www.python.org.



Java HashMap Implementation

Power-of-two table sizes.

Hash Function: “Bit Scrambling” then use low order bits.

Collision resolution: Chaining

Default load factor: .75

1 static int hash(int h) {

2 h ^= (h >>> 20) ^ (h >>> 12);

3 return h ^ (h >>> 7) ^ (h >>> 4);

4 }

5

6 static int indexFor(int h, int length) {

7 return h & (length -1);

8 }

(code from HashMap.java, OpenJDK, v.7 GPLV2: http://download.java.net/openjdk/jdk7/)


