
© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Linked StructuresLinked Structures Chapter 6

2Chapter 6: Linked Structures –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Linked StructureLinked Structure

 Constructed using a collection of objects called
nodes.

 Each node contains data and at least one
reference or link to another node.

 Linked list – a linked structure in which the nodes
are linked together in linear order.

3Chapter 6: Linked Structures –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Linked ListLinked List

 Terms:
 head – first node in the list.
 tail – last node in the list; link field has a null

reference.

4Chapter 6: Linked Structures –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Node DefinitionNode Definition

 The nodes are constructed from a simple storage
class:

class _ListNode:
 def __init__(self, data):
 self.data = data
 self.next = None

5Chapter 6: Linked Structures –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Traversing the NodesTraversing the Nodes

 We can traverse the nodes using a temporary
external reference variable.

 Initialize a temporary reference to the head node.

 Visit the node.

6Chapter 6: Linked Structures –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Traversing the NodesTraversing the Nodes

 Advance the temporary reference to the next node
using the link field and visit that node.

7Chapter 6: Linked Structures –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Traversing the NodesTraversing the Nodes

 Repeat the process until the reference falls off the
end of the list.

8Chapter 6: Linked Structures –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

SearchingSearching

 We can perform a linear search to determine if the
list contains a specific data item.

9Chapter 6: Linked Structures –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Prepending NodesPrepending Nodes

 When working with an unsorted linked list, new
values can be inserted at any point.

 We can prepend new items with little effort.
 Example: add value 96 to the sample list.

10Chapter 6: Linked Structures –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Prepending NodesPrepending Nodes

 Create a new node for the new item.

 Connect the new node to the list.

11Chapter 6: Linked Structures –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Removing NodesRemoving Nodes

 Removing a node from the middle of the list
requires a second external reference.

 Resulting list.

12Chapter 6: Linked Structures –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Removing NodesRemoving Nodes

 Removing the first node is a special case.
 The head reference must be reposition to

reference the next node in the list.

13Chapter 5: Searching and Sorting
 –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Using a Tail ReferenceUsing a Tail Reference

 Some applications require items be appended to
the end of the linked list.
 tail reference – a second external reference

indicating the tail or last node in the list.

14Chapter 5: Searching and Sorting
 –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Appending NodesAppending Nodes

 Must manage the tail reference as nodes are
added/removed.
 Example: append 21 to the list.

15Chapter 6: Linked Structures –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Appending NodesAppending Nodes

newNode = ListNode(item)
if self._head is None :
 self._head = newNode
 self._tail = newNode
else :
 self._tail.next = newNode
 self._tail = newNode

 Given the head and tail reference, we can add an
item to a linked list.

What is the time complexity to append
a node to a linked list, if no tail

reference is used?

What is the time complexity to append
a node to a linked list, if no tail

reference is used?

16Chapter 5: Searching and Sorting
 –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Removing NodesRemoving Nodes

 If the tail node is removed, the tail reference has to
be adjusted.

17Chapter 5: Searching and Sorting
 –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

The Sorted Linked ListThe Sorted Linked List

 The items in a linked list can be maintained in
sorted order.

18Chapter 6: Linked Structures –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Sorted List: SearchingSorted List: Searching

 Searching a sorted list is similar to that of an
unsorted list.

def sortedSearch(head, target):
 curNode = head

 # Stop early when a larger value is encountered.
 while curNode is not None and \
 target <= curNode.data :
 if curNode.data == target :
 return True
 else :
 curNode = node.next

 return False

19Chapter 6: Linked Structures –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Sorted List: InsertSorted List: Insert

 Adding a new node to a sorted list requires locating
the correct position within the list.

 Locating the position is similar to the removal
operation.

 Use a second temporary reference for the
predecessor.

 There are 3 possible cases.
 front
 middle
 back

20Chapter 6: Linked Structures –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Sorted List: InsertSorted List: Insert

 (1) Insert at the front.

21Chapter 6: Linked Structures –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Sorted List: InsertSorted List: Insert

 (2) Insert in the middle.

22Chapter 6: Linked Structures –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Singly Linked List / Python List ComparisonSingly Linked List / Python List Comparison

 When does a Linked List make more sense than a
contiguous representation?

Operation Linked List Python List

append(item)

insert(0, item)

pop(0)

pop(i)

__getitem__(i)

__setitem__(i, item)

23Chapter 6: Linked Structures –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Singly Linked List / Python List ComparisonSingly Linked List / Python List Comparison

 When does a Linked List make more sense than a
contiguous representation?

Operation Linked List Python List

append(item) O(n) O(1)*

insert(0, item) O(1) O(n)

pop(0) O(1) O(n)

pop(i) O(n) O(n)

__getitem__(i) O(n) O(1)

__setitem__(i, item) O(n) O(1)

* Amortized

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

