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Linked StructureLinked Structure

 Constructed using a collection of objects called 
nodes.

 Each node contains data and at least one 
reference or link to another node.

 Linked list – a linked structure in which the nodes 
are linked together in linear order.
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Linked ListLinked List

 Terms:
 head – first node in the list.
 tail – last node in the list; link field has a null 

reference. 
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Node DefinitionNode Definition

 The nodes are constructed from a simple storage 
class: 

class _ListNode:
  def __init__( self, data ):
    self.data = data
    self.next = None     
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Traversing the NodesTraversing the Nodes

 We can traverse the nodes using a temporary 
external reference variable.

 Initialize a temporary reference to the head node.

 Visit the node.
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Traversing the NodesTraversing the Nodes

 Advance the temporary reference to the next node 
using the link field and visit that node.
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Traversing the NodesTraversing the Nodes

 Repeat the process until the reference falls off the 
end of the list.
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SearchingSearching

 We can perform a linear search to determine if the 
list contains a specific data item. 
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Prepending NodesPrepending Nodes

 When working with an unsorted linked list, new 
values can be inserted at any point.

 We can prepend new items with little effort. 
 Example: add value 96 to the sample list.
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Prepending NodesPrepending Nodes

 Create a new node for the new item.

 Connect the new node to the list.
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Removing NodesRemoving Nodes

 Removing a node from the middle of the list 
requires a second external reference.

 Resulting list.
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Removing NodesRemoving Nodes

 Removing the first node is a special case.
 The head reference must be reposition to 

reference the next node in the list.
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Using a Tail ReferenceUsing a Tail Reference

 Some applications require items be appended to 
the end of the linked list.
 tail reference – a second external reference 

indicating the tail or last node in the list.
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Appending NodesAppending Nodes

 Must manage the tail reference as nodes are 
added/removed.
 Example: append 21 to the list.
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Appending NodesAppending Nodes

newNode = ListNode( item )
if self._head is None :
  self._head = newNode
  self._tail = newNode
else :
  self._tail.next = newNode
  self._tail = newNode                

 Given the head and tail reference, we can add an 
item to a linked list.

What is the time complexity to append 
a node to a linked list, if no tail 

reference is used?

What is the time complexity to append 
a node to a linked list, if no tail 

reference is used?



16Chapter 5: Searching and Sorting
  –  

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise. 

Removing NodesRemoving Nodes

 If the tail node is removed, the tail reference has to 
be adjusted.
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The Sorted Linked ListThe Sorted Linked List

 The items in a linked list can be maintained in 
sorted order.
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Sorted List: SearchingSorted List: Searching

 Searching a sorted list is similar to that of an 
unsorted list.

def sortedSearch( head, target ):
  curNode = head

   # Stop early when a larger value is encountered.
  while curNode is not None and \
        target <= curNode.data :
    if curNode.data == target : 
      return True
    else :
      curNode = node.next

  return False             
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Sorted List: InsertSorted List: Insert

 Adding a new node to a sorted list requires locating 
the correct position within the list. 

 Locating the position is similar to the removal 
operation.

 Use a second temporary reference for the 
predecessor. 

 There are 3 possible cases.
 front
 middle
 back
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Sorted List: InsertSorted List: Insert

 (1) Insert at the front.
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Sorted List: InsertSorted List: Insert

 (2) Insert in the middle.
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Singly Linked List / Python List ComparisonSingly Linked List / Python List Comparison

 When does a Linked List make more sense than a 
contiguous representation? 

Operation Linked List Python List

append(item)

insert(0, item)

pop(0)

pop(i)

__getitem__(i)

__setitem__(i, item)
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Singly Linked List / Python List ComparisonSingly Linked List / Python List Comparison

 When does a Linked List make more sense than a 
contiguous representation? 

Operation Linked List Python List

append(item) O(n) O(1)*

insert(0, item) O(1) O(n)

pop(0) O(1) O(n)

pop(i) O(n) O(n)

__getitem__(i) O(n) O(1)

__setitem__(i, item) O(n) O(1)

* Amortized
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