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Linked Structure

* Constructed using a collection of objects called
nodes.

* Each node contains data and at least one
reference or link to another node.

* Linked list — a linked structure in which the nodes
are linked together in linear order.
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Linked List

* Terms:

* head — first node in the list.

* tail — last node In the list: link field has a null
reference.
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Node Definition

* The nodes are constructed from a simple storage

class:

class ListNode:
def _ _init_ ( self
self.data = data
self.next = None
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Traversing the Nodes

* We can traverse the nodes using a temporary

external reference variable.
head
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* |nitialize a temporary reference to the head node.

head curNode
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* Visit the node.
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Traversing the Nodes

* Advance the temporary reference to the next node
using the link field and visit that node.

head curNode
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Traversing the Nodes

* Repeat the process until the reference falls off the
end of the list.

head
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Searching

* We can perform a linear search to determine if the
list contains a specific data item.
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Prepending Nodes

* When working with an unsorted linked list, new
values can be inserted at any point.

* We can prepend new items with little effort.
* Example: add value 96 to the sample list.
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* Create a new node for the new item.

newNode

Prepending Nodes

==

* Connect the new node to the list.

newNode
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Removing Nodes

* Removing a node from the middle of the list

requires a second external reference.
head predNode curNode
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* Resulting list.
head
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Removing Nodes

* Removing the first node Is a special case.

* The head reference must be reposition to
reference the next node in the list.

pred node head
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Using a Tail Reference

* Some applications require items be appended to
the end of the linked list.

* tail reference — a second external reference
Indicating the tail or last node in the list.

[[28] o—]—»[[m] ._H[45] »]—»[[13] o—H[?] .]

Chapter 5: Searching and Sortiri$

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.




Appending Nodes

* Must manage the tall reference as nodes are
added/removed.

* Example: append 21 to the list.

head tail new_die
AH- OB {E8-GE-{UH {@E
head tail

Y
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Appending Nodes

* Given the head and tail reference, we can add an
item to a linked list.

newNode = ListNode( item )
if self._head 1is None :

self. head = newNode
self. tall = newNode
else :

self. talil.next = newNode
self. tall = newNode

What is the time complexity to append
a hode to a linked list, if no tail
reference is used?

S
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Removing Nodes

* |f the tall node Is removed, the tail reference has to
be adjusted.

head predNode tail curNode
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The Sorted Linked List

* The items In a linked list can be maintained In
sorted order.
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Sorted List: Searching

* Searching a sorted list is similar to that of an
unsorted list.

def sortedSearch( head, target ):
curNode = head

# Stop early when a larger value 1s encountered.
while curNode 1is not None and \
target <= curNode.data :
if curNode.data == target
return True
else :
curNode = node.next

return False
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Sorted List: Insert

* Adding a new node to a sorted list requires locating
the correct position within the list.

* Locating the position is similar to the removal
operation.

* Use a second temporary reference for the
predecessor.

* There are 3 possible cases.

* front
* middle
* back
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Sorted List: Insert

* (1) Insert at the front.
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Sorted List: Insert

* (2) Insert in the middle.
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Singly Linked List / Python List Comparison

Operation Linked List Python List
append(item)

insert(0, item)

pop(0)

pop(i)

__getitem__ ()

__setitem__ (i, item)

* When does a Linked List make more sense than a
contiguous representation?
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Singly Linked List / Python List Comparison

Operation Linked List
append(item) O(n)
insert(0, item) Oo(1)
pop(0) O(1)
pop(i) O(n)
__getitem__ () O(n)

__setitem__ (i, item) O(n)

Python List
O(1)*

O(n)

O(n)

O(n)

O(1)

O(1)

* When does a Linked List make more sense than a

contiguous representation?

* Amortized
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