Linked Structures Chapter 6

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Linked Structure

* Constructed using a collection of objects called
nodes.

* Each node contains data and at least one
reference or link to another node.

* Linked list — a linked structure in which the nodes
are linked together in linear order.

head

1]
OE-EE-PE-EE-EE

Chapter 6: Linked Structures —2

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Linked List

* Terms:

* head — first node in the list.

* tail — last node In the list: link field has a null
reference.

() —{(=2) B o) B) B (=))

Chapter 6: Linked Structures —3

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Node Definition

* The nodes are constructed from a simple storage

class:

class ListNode:
def _ _init_ (self
self.data = data
self.next = None

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

, data):

Chapter 6: Linked Structures —4

Traversing the Nodes

* We can traverse the nodes using a temporary

external reference variable.
head

(2) 1 (=2) {08) {2 B

* |nitialize a temporary reference to the head node.

head curNode

(&) (52 () B o) &)~) &)

* Visit the node.

Chapter 6: Linked Structures —5

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Traversing the Nodes

* Advance the temporary reference to the next node
using the link field and visit that node.

head curNode

T

B8

Chapter 6: Linked Structures —6

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Traversing the Nodes

* Repeat the process until the reference falls off the
end of the list.

head

Chapter 6: Linked Structures —7

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Searching

* We can perform a linear search to determine if the
list contains a specific data item.

Chapter 6: Linked Structures —8

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Prepending Nodes

* When working with an unsorted linked list, new
values can be inserted at any point.

* We can prepend new items with little effort.
* Example: add value 96 to the sample list.

(=) 53— () 0o B —{(ze) 3~ (=) &)

Chapter 6: Linked Structures —9

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

* Create a new node for the new item.

newNode

Prepending Nodes

==

* Connect the new node to the list.

newNode

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Chapter 6: Linked Structures —10

Removing Nodes

* Removing a node from the middle of the list

requires a second external reference.
head predNode curNode

1] L.
e BRI

* Resulting list.
head

EE-OE-EE-EE-EE)

Chapter 6: Linked Structures —11

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Removing Nodes

* Removing the first node Is a special case.

* The head reference must be reposition to
reference the next node in the list.

pred node head

Chapter 6: Linked Structures —12

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Using a Tail Reference

* Some applications require items be appended to
the end of the linked list.

* tail reference — a second external reference
Indicating the tail or last node in the list.

[[28] o—]—»[[m] ._H[45] »]—»[[13] o—H[?] .]

Chapter 5: Searching and Sortiri$

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Appending Nodes

* Must manage the tall reference as nodes are
added/removed.

* Example: append 21 to the list.

head tail new_die
AH- OB {E8-GE-{UH {@E
head tail

Y

DE-EE-EE-EE-0E

Chapter 5: Searching and Sortirig!

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Appending Nodes

* Given the head and tail reference, we can add an
item to a linked list.

newNode = ListNode(item)
if self._head 1is None :

self. head = newNode
self. tall = newNode
else :

self. talil.next = newNode
self. tall = newNode

What is the time complexity to append
a hode to a linked list, if no tail
reference is used?

S
Chapter 6: Linked Structures —15

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Removing Nodes

* |f the tall node Is removed, the tail reference has to
be adjusted.

head predNode tail curNode

......
[1 ' '
' ' = ' '
[' e ' '
0 ' . i '
A s .- ===
ol
-
.
e
.
.
.

Chapter 5: Searching and Sortirih

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

The Sorted Linked List

* The items In a linked list can be maintained In
sorted order.

Chapter 5: Searching and Sortirly

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Sorted List: Searching

* Searching a sorted list is similar to that of an
unsorted list.

def sortedSearch(head, target):
curNode = head

Stop early when a larger value 1s encountered.
while curNode 1is not None and \
target <= curNode.data :
if curNode.data == target
return True
else :
curNode = node.next

return False

Chapter 6: Linked Structures —18

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Sorted List: Insert

* Adding a new node to a sorted list requires locating
the correct position within the list.

* Locating the position is similar to the removal
operation.

* Use a second temporary reference for the
predecessor.

* There are 3 possible cases.

* front
* middle
* back

Chapter 6: Linked Structures —19

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Sorted List: Insert

* (1) Insert at the front.

Chapter 6: Linked Structures —20

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Sorted List: Insert

* (2) Insert in the middle.

Chapter 6: Linked Structures —21

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Singly Linked List / Python List Comparison

Operation Linked List Python List
append(item)

insert(0, item)

pop(0)

pop(i)

__getitem__ ()

__setitem__ (i, item)

* When does a Linked List make more sense than a
contiguous representation?

Chapter 6: Linked Structures —22

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Singly Linked List / Python List Comparison

Operation Linked List
append(item) O(n)
insert(0, item) Oo(1)
pop(0) O(1)
pop(i) O(n)
__getitem__ () O(n)

__setitem__ (i, item) O(n)

Python List
O(1)*

O(n)

O(n)

O(n)

O(1)

O(1)

* When does a Linked List make more sense than a

contiguous representation?

* Amortized

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Chapter 6: Linked Structures —23

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

