
© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Linked StructuresLinked Structures Chapter 6

2Chapter 6: Linked Structures –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Linked StructureLinked Structure

 Constructed using a collection of objects called
nodes.

 Each node contains data and at least one
reference or link to another node.

 Linked list – a linked structure in which the nodes
are linked together in linear order.

3Chapter 6: Linked Structures –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Linked ListLinked List

 Terms:
 head – first node in the list.
 tail – last node in the list; link field has a null

reference.

4Chapter 6: Linked Structures –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Node DefinitionNode Definition

 The nodes are constructed from a simple storage
class:

class _ListNode:
 def __init__(self, data):
 self.data = data
 self.next = None

5Chapter 6: Linked Structures –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Traversing the NodesTraversing the Nodes

 We can traverse the nodes using a temporary
external reference variable.

 Initialize a temporary reference to the head node.

 Visit the node.

6Chapter 6: Linked Structures –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Traversing the NodesTraversing the Nodes

 Advance the temporary reference to the next node
using the link field and visit that node.

7Chapter 6: Linked Structures –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Traversing the NodesTraversing the Nodes

 Repeat the process until the reference falls off the
end of the list.

8Chapter 6: Linked Structures –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

SearchingSearching

 We can perform a linear search to determine if the
list contains a specific data item.

9Chapter 6: Linked Structures –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Prepending NodesPrepending Nodes

 When working with an unsorted linked list, new
values can be inserted at any point.

 We can prepend new items with little effort.
 Example: add value 96 to the sample list.

10Chapter 6: Linked Structures –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Prepending NodesPrepending Nodes

 Create a new node for the new item.

 Connect the new node to the list.

11Chapter 6: Linked Structures –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Removing NodesRemoving Nodes

 Removing a node from the middle of the list
requires a second external reference.

 Resulting list.

12Chapter 6: Linked Structures –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Removing NodesRemoving Nodes

 Removing the first node is a special case.
 The head reference must be reposition to

reference the next node in the list.

13Chapter 5: Searching and Sorting
 –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Using a Tail ReferenceUsing a Tail Reference

 Some applications require items be appended to
the end of the linked list.
 tail reference – a second external reference

indicating the tail or last node in the list.

14Chapter 5: Searching and Sorting
 –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Appending NodesAppending Nodes

 Must manage the tail reference as nodes are
added/removed.
 Example: append 21 to the list.

15Chapter 6: Linked Structures –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Appending NodesAppending Nodes

newNode = ListNode(item)
if self._head is None :
 self._head = newNode
 self._tail = newNode
else :
 self._tail.next = newNode
 self._tail = newNode

 Given the head and tail reference, we can add an
item to a linked list.

What is the time complexity to append
a node to a linked list, if no tail

reference is used?

What is the time complexity to append
a node to a linked list, if no tail

reference is used?

16Chapter 5: Searching and Sorting
 –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Removing NodesRemoving Nodes

 If the tail node is removed, the tail reference has to
be adjusted.

17Chapter 5: Searching and Sorting
 –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

The Sorted Linked ListThe Sorted Linked List

 The items in a linked list can be maintained in
sorted order.

18Chapter 6: Linked Structures –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Sorted List: SearchingSorted List: Searching

 Searching a sorted list is similar to that of an
unsorted list.

def sortedSearch(head, target):
 curNode = head

 # Stop early when a larger value is encountered.
 while curNode is not None and \
 target <= curNode.data :
 if curNode.data == target :
 return True
 else :
 curNode = node.next

 return False

19Chapter 6: Linked Structures –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Sorted List: InsertSorted List: Insert

 Adding a new node to a sorted list requires locating
the correct position within the list.

 Locating the position is similar to the removal
operation.

 Use a second temporary reference for the
predecessor.

 There are 3 possible cases.
 front
 middle
 back

20Chapter 6: Linked Structures –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Sorted List: InsertSorted List: Insert

 (1) Insert at the front.

21Chapter 6: Linked Structures –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Sorted List: InsertSorted List: Insert

 (2) Insert in the middle.

22Chapter 6: Linked Structures –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Singly Linked List / Python List ComparisonSingly Linked List / Python List Comparison

 When does a Linked List make more sense than a
contiguous representation?

Operation Linked List Python List

append(item)

insert(0, item)

pop(0)

pop(i)

__getitem__(i)

__setitem__(i, item)

23Chapter 6: Linked Structures –

© 2011 John Wiley & Sons, Data Structures and Algorithms Using Python, by Rance D. Necaise.

Singly Linked List / Python List ComparisonSingly Linked List / Python List Comparison

 When does a Linked List make more sense than a
contiguous representation?

Operation Linked List Python List

append(item) O(n) O(1)*

insert(0, item) O(1) O(n)

pop(0) O(1) O(n)

pop(i) O(n) O(n)

__getitem__(i) O(n) O(1)

__setitem__(i, item) O(n) O(1)

* Amortized

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

