CS240

Nathan Sprague

September 12, 2012

Algorithm Analysis

- What should we measure?
 - clarity/simplicity?
 - space efficiency?
 - time efficiency?
- A story...

Take-Home Messages (1/2)

- Analysis must account for input size
 - How does the running time change as the input size increases?

Take-Home Messages (2/2)

- Goal is to analyze algorithms, not programs.
- Running time of programs is subject to:
 - Programming language
 - Speed of the computer
 - Computer load
 - Compiler version
 - ...

If Not Time, Then What?

If Not Time, Then What?

- Number of steps that the algorithm takes to complete
- Goal: develop a function that maps from input size to the number of steps
- Examples...

```
sum = 0
for i in range(n):
sum += i
```

```
sum = 0
for i in range(n):
for j in range(n):
sum += i
```

Basic Operations

- Goal restated: develop a function that maps from input size to the number of times the "basic operation" is performed
- No single correct choice for basic operation
- Guideline:
 - Should happen in inner-most loop
- If chosen well, count will be proportional to execution time

Growth/Complexity Functions

- Let's look at them...
- Goal restated: Map our algorithm to a complexity function

Big-O

- Informal description: Growth functions are categorized according to their dominant (fastest growing) term
- Constants and lower-order terms are discarded
- Examples:
 - $10n \in O(n)$
 - $5n^2 + 2n + 3 \in O(n^2)$
 - $n\log n + n \in O(n\log n)$

Why Drop the Constants?

■ Example...

Why Drop the Constants?

- Despite constants, functions from slower growing classes will always be faster eventually
- Real goal is to understand the relative impact of increasing input size
- Side benefit: justifies flexibility in choosing basic operation

Why Drop Lower Order Terms

- Contribution of lower-order terms becomes insignificant as input size increases
- Example...

Big O

$$f(n) \leq cg(n)$$

Big O

$$f(n) \leq cg(n)$$

- Informal rule of "dropping constants" follows immediately:
 - $50n \stackrel{?}{\in} O(n)$

Big O

$$f(n) \leq cg(n)$$

- Informal rule of "dropping constants" follows immediately:
 - $50n \stackrel{?}{\in} O(n)$
 - Yes! choose c = 50, N = 0, clearly
 - 50n < 50n for all n > 0

Big O

$$f(n) \leq cg(n)$$

- Informal rule of "dropping lower-order terms" also follows:
 - $n^2 + 40n \stackrel{?}{\in} O(n^2)$

Big O

$$f(n) \leq cg(n)$$

- Informal rule of "dropping lower-order terms" also follows:
 - $n^2 + 40n \stackrel{?}{\in} O(n^2)$
 - Notice that:

$$n^2 + 40n \le n^2 + 40n^2 = 41n^2$$

Big O

 $f(n) \in O(g(n))$ iff there exist positive constants c and N such that for all n > N,

$$f(n) \leq cg(n)$$

- Informal rule of "dropping lower-order terms" also follows:
 - $n^2 + 40n \stackrel{?}{\in} O(n^2)$
 - Notice that:

$$n^2 + 40n \le n^2 + 40n^2 = 41n^2$$

• Choose c = 41, N = 0, clearly $n^2 + 40n < 41n^2$ for all n > 0

Algorithm Analysis Algorithm

- STEP 1: Select a measure of input size and a basic operation
- STEP 2: Develop a function T(n) that describes the number of times the basic operation occurs as a function of input size
- STEP 3: Describe T(n) using order notation (Big-O)

Big O Describes an Upper Bound

- Big O is loosely analogous to ≤
- All of these statements are true:

$$n^{2} \in O(n^{2})$$

$$n^{2} \in O(n^{4})$$

$$n^{2} \in O(n!)$$
...
$$2n^{2} \in O(n^{2})$$

Big Omega

Big Ω

$$f(n) \ge cg(n)$$

- lacksquare Big Ω is loosely analogous to \geq
- All of these statements are true:

$$n^2 \in \Omega(n^2)$$

 $n^4 \in \Omega(n^2)$
 $n! \in \Omega(n^2)$
...
 $n^2 \in \Omega(2n^2)$

Big Theta

Big Θ

$$f(n) \in \theta(g(n))$$
 iff, $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$

- lacksquare Big Θ is loosely analogous to =
- Which of these statements are true? $n^2 \stackrel{?}{\in} \Theta(n^2)$ $2n^2 \stackrel{?}{\in} \Theta(n^2)$ $n^2 \stackrel{?}{\in} \Theta(n^4)$ $5n^2 + 2n \stackrel{?}{\in} \Theta(4n^3)$

Big Theta

Big Θ

$$f(n) \in \theta(g(n))$$
 iff, $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$

- Big Θ is loosely analogous to =
- Which of these statements are true? $n^2 \in \Theta(n^2)$ $2n^2 \in \Theta(n^2)$ $n^2 \notin \Theta(n^4)$ $5n^2 + 2n \notin \Theta(4n^3)$

Big O

$$f(n) \in O(g(n))$$
 if

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c<\infty$$

where c is some constant (possibly 0)

Big O

$$f(n) \in O(g(n))$$
 if

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c<\infty$$

where c is some constant (possibly 0)

$$n^3 + 2n \in n^3$$

Big O

$$f(n) \in O(g(n))$$
 if

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c<\infty$$

where c is some constant (possibly 0)

$$n^3 + 2n \in n^3$$

$$\lim_{n \to \infty} \frac{n^3 + 2n}{n^3} = \lim_{n \to \infty} 1 + \frac{2}{n^2} = 1$$

Big Ω

$$f(n) \in \Omega(g(n))$$
 if

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c>0$$

where c is some constant (possibly ∞)

Big Θ

$$f(n) \in \Theta(g(n))$$
 if

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c, 0< c<\infty$$

where c is some constant.

A Complication

Let's analyze this algorithm:

```
def contains(key, numbers):
    for num in numbers:
        if key == num:
            return True
        return False
```

Best, Worst, Average Case

```
def contains(key, numbers):
    for num in numbers:
        if key == num:
            return True
        return False
```

- Best Case: 1 comparison, O(1)
- Worst Case: n comparisons, O(n)
- Average Case: $\frac{n+1}{2}$ comparisons, O(n)

Refined Algorithm Analysis Algorithm

- STEP 1: Decide on best, worst, or average case analysis
- STEP 2: Select a measure of input size and a basic operation
- STEP 3: Find a function T(n) that describes the number of times the basic operation occurs
- STEP 4: Describe T(n) using order notation:
 - Big-O for an upper bound "The algorithm is at least this fast!"
 - Big- Ω for a lower bound "The algorithm is at least this slow!"
 - Big-Θ for both upper and lower bound

Exercises (1)

- Input size? Basic operation? Growth function?
- Big-O, Ω, Θ?

```
def someFunc(values):
    sum = 0
    for i in values:
        sum += i
    for i in range(20):
        sum += i
    return sum
```

Exercises (2)

- Input size? Basic operation? Growth function?
- Big-O, Ω, Θ?

```
def someFunc(values):
    sum = 0
    for i in values:
        sum += i
        for j in range(20):
            sum += j
    return sum
```

Exercises (3)

- Input size? Basic operation? Growth function?
- Big-O, Ω, Θ?

```
def someFunc(values):
    sum = 0
    indx = 1
    while indx <= len(values):
        sum += values[indx - 1]
    indx *= 2
    return sum</pre>
```

Exercises (4)

- Input size? Basic operation? Growth function?
- Big-O, Ω, Θ?

```
def someFunc(values):
        sim = 0
2
3
        for i in range (1000):
            sum = sum + i
5
6
        for num in values:
7
            indx = 1
            while indx <= len(values):</pre>
                 sum += values[indx - 1]
10
                 indx *= 2
11
12
13
       return sum
```

L'Hôpital's Rule

L'Hôpital's Rule

If
$$\lim_{n \to \infty} f(n) = \lim_{n \to \infty} g(n) = \infty$$
 and $f'(n)$ and $g'(n)$ exist, then

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\lim_{n\to\infty}\frac{f'(n)}{g'(n)}$$

■
$$n \log_2 n \stackrel{?}{\in} O(n^2)$$

■ $\lim_{n \to \infty} \frac{n \log_2 n}{n^2} = \lim_{n \to \infty} \frac{\log_2 n}{n}$

■ $\lim_{n \to \infty} \frac{\ln n}{n \ln 2}$ (Recall that $\log_b(n) = \frac{\log_k n}{\log_k b}$)

$$\lim_{n \to \infty} \frac{n \log_2 n}{n^2} = \lim_{n \to \infty} \frac{\log_2 n}{n}$$

$$\blacksquare = \lim_{n \to \infty} \frac{\ln n}{n \ln 2} \quad (\text{Recall that } \log_b(n) = \frac{\log_k n}{\log_k b})$$

Apply L'Hôpital's rule:

$$\blacksquare = \lim_{n \to \infty} \frac{\frac{1}{n}}{\ln 2} \quad \text{(Recall that } \frac{d}{dx} \ln x = 1/x\text{)}$$

$$\blacksquare = \lim_{n \to \infty} \frac{\ln n}{n \ln 2} \quad (\text{Recall that } \log_b(n) = \frac{\log_k n}{\log_k b})$$

Apply L'Hôpital's rule:

$$\blacksquare = \lim_{n \to \infty} \frac{1}{n \ln 2} = 0$$

What If We Want to Show That f(n) is NOT O(g(n))

■ Easiest approach is usually to show:

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$$