Nathan Sprague

September 12, 2012

Algorithm Analysis

m What should we measure?
m clarity/simplicity?
m space efficiency?
m time efficiency?

m A story...

Take-Home Messages (1/2)

m Analysis must account for input size

m How does the running time change as the input size
increases?

Take-Home Messages (2/2)

m Goal is to analyze algorithms, not programs.
m Running time of programs is subject to:

m Programming language
Speed of the computer

Computer load
Compiler version

If Not Time, Then What?

If Not Time, Then What?

m Number of steps that the algorithm takes to complete

m Goal: develop a function that maps from input size to the
number of steps

m Examples...

1 |sum = O
2 |for i in range(n):
3 sum += i

sum = O
for i in range(n):
for j in range(n):
sum += i

AW N R

Basic Operations

m Goal restated: develop a function that maps from input
size to the number of times the “basic operation” is
performed

m No single correct choice for basic operation

m Guideline:

m Should happen in inner-most loop

m If chosen well, count will be proportional to execution
time

Growth /Complexity Functions

m Let's look at them...

m Goal restated: Map our algorithm to a complexity
function

m Informal description: Growth functions are categorized
according to their dominant (fastest growing) term

m Constants and lower-order terms are discarded

m Examples:
m 10n € O(n)
m 50 +2n+3 € 0(n?)
m nlogn + n € O(nlogn)

Why Drop the Constants?

m Example...

Why Drop the Constants?

m Despite constants, functions from slower growing classes
will always be faster eventually

m Real goal is to understand the relative impact of
increasing input size

m Side benefit: justifies flexibility in choosing basic
operation

Why Drop Lower Order Terms

m Contribution of lower-order terms becomes insignificant
as input size increases

m Example...

Formal Definition of Big-O

f(n) € O(g(n)) iff there exist positive constants ¢ and N such
that for all n > N,

f(n) < cg(n)

Formal Definition of Big-O

f(n) € O(g(n)) iff there exist positive constants ¢ and N such
that for all n > N,

f(n) < cg(n)
m Informal rule of “dropping constants” follows
immediately:

m 500 & O(n)

Formal Definition of Big-O

f(n) € O(g(n)) iff there exist positive constants ¢ and N such
that for all n > N,

f(n) < cg(n)

m Informal rule of “dropping constants” follows
immediately:

?
m 50n € O(n)
m Yes! choose ¢ = 50, N = 0, clearly
m 50n <50nforalln>0

Formal Definition of Big-O

f(n) € O(g(n)) iff there exist positive constants ¢ and N such
that for all n > N,

f(n) < cg(n)

m Informal rule of “dropping lower-order terms” also
follows:

?
m n?+40n € O(n?)

Formal Definition of Big-O

f(n) € O(g(n)) iff there exist positive constants ¢ and N such
that for all n > N,

f(n) < cg(n)

m Informal rule of “dropping lower-order terms” also
follows:
?
m n?+40n € O(n?)
m Notice that:
n? +40n < n? + 40n% = 41n°

Formal Definition of Big-O

f(n) € O(g(n)) iff there exist positive constants ¢ and N such
that for all n > N,

f(n) < cg(n)

m Informal rule of “dropping lower-order terms” also
follows:
m 2+ 40n ¢ 0O(n?)
m Notice that:
n? +40n < n? + 40n% = 41n°
m Choose c = 41, N = 0, clearly
n% 4+ 40n < 41n? for all n > 0

Algorithm Analysis Algorithm

m STEP 1: Select a measure of input size and a basic
operation

m STEP 2: Develop a function T(n) that describes the
number of times the basic operation occurs as a function
of input size

m STEP 3: Describe T(n) using order notation (Big-O)

Big O Describes an Upper Bound

m Big O is loosely analogous to <
m All of these statements are true:
n? € O(n?)
n? € O(n*)
n? € O(n!)

2n* € O(n?)

Big Omega

f(n) € Q(g(n)) iff there exist positive constants ¢ and N such
that for all n > N,

f(n) > cg(n)

m Big € is loosely analogous to >
m All of these statements are true:
n? € Q(n?)
n* € Q(n?)
nl € Q(n?)

n? € Q(2n?)

Big Theta

f(n) € 0(g(n)) iff,
f(n) € O(g(n)) and £(n) € Q(g(n))

m Big O is loosely analogous to =
[Which of these statements are true?
n? € ©(n?)
22 & o(n?)
& o(n*)
52+ 2n ¢ O(4n%)

Big Theta

f(n) € 0(g(n)) iff,
f(n) € O(g(n)) and £(n) € Q(g(n))

m Big © is loosely analogous to =
m Which of these statements are true?

n? € ©(n?)

2n* € ©(n?)

n? & ©(n*)

5n° +2n & ©(4n%)

Alternate Definitions of O, 2, ©

f(n) € O(g(n)) if
f(n)

nILn;Om:c<oo

where c is some constant (possibly 0)

Alternate Definitions of O, 2, ©

f(n) € O(g(n)) if

im m =c< o0
M g(n) ~

where c is some constant (possibly 0)

mnP+2nend

Alternate Definitions of O, 2, ©

f(n) € O(g(n)) if

im m =c< o0
M g(n) ~

where c is some constant (possibly 0)

mnP+2nend

340 2
im T im1e S =1

n—o0 n n—o00 n2

Alternate Definitions of O, 2, ©

f(n) € Q(g(n)) if
f(n)

im —==c¢c>0
n—o0 g(n)

where c is some constant (possibly co)

Alternate Definitions of O, 2, ©

f(n) € ©(g(n)) if
f(n)

lim —5 =c¢,0< c <
n—o0 g(n)

where c is some constant.

A Complication

o AW

m Let's analyze this algorithm:

def contains(key, numbers):
for num in numbers:
if key == num:
return True
return False

Best, Worst, Average Case

def contains(key, numbers):
for num in numbers:
if key == num:
return True
return False

[I N I

m Best Case: 1 comparison, O(1)
m Worst Case: n comparisons, O(n)

. n+1 H
m Average Case: 3= comparisons, O(n)

Refined Algorithm Analysis Algorithm

m STEP 1: Decide on best, worst, or average case analysis

m STEP 2: Select a measure of input size and a basic
operation

m STEP 3: Find a function T(n) that describes the number
of times the basic operation occurs
m STEP 4: Describe T(n) using order notation:
m Big-O for an upper bound
“The algorithm is at least this fast!”
m Big-Q for a lower bound
“The algorithm is at least this slow!”
m Big-© for both upper and lower bound

Exercises (1)

N o g A W N o=

m Input size? Basic operation? Growth function?
m Big-O, Q, ©7

def someFunc(values):
sum = 0
for i in values:
sum += i
for i in range (20):
sum += i
return sum

Exercises (2)

m Input size? Basic operation? Growth function?
m Big-O, Q, ©7

def someFunc(values):
sum = 0
for i in values:
sum += i
for j in range (20):
sum += j
return sum

N o g A W N o=

Exercises (3)

m Input size? Basic operation? Growth function?

m Big-O, Q, ©7
1 |def someFunc(values):
2 sum = 0
3 indx = 1
4 while indx <= len(values):
5 sum += values[indx - 1]
6 indx *= 2
7 return sum

Exercises (4)

m Input size? Basic operation? Growth function?
m Big-O, Q, ©7

def someFunc(values):
sum = 0

for i in range (1000):
sum = sum + i

for num in values:
indx = 1
while indx <= len(values):
sum += values[indx - 1]
indx *= 2

© 0 N o A W N

e e
w N = O

return sum

L'"Hopital’s Rule

L'Hopital’'s Rule

If lim f(n) = lim g(n) = oo and f’(n) and g’(n) exist, then
n—oo

n—o0

(n) f'(n)

nll—[go m - nll—[go g’ (n)

L'Hopital Example

?
m nlog, n € O(n?)

L'Hopital Example

?
m nlog, n € O(n?)
. nlogyn . logyn
m lim = lim
n—o00 n2 n—o0 n

L'Hopital Example

?
m nlog, n € O(n?)

. nlogyn . logyn
m lim >— = lim
n—o00 n n—o0 n
Inn log, n
= |im Recall that log,(n) =
im 2 &5(M) = {0g, b’

L'Hopital Example

?
nlog, n € O(n?)

m
nlog, n . log, n
m |lim g22 = |lim &
n—o00 n n—o0 n
Inn log, n
=1 Recall that lo =
== Jim e &5(M) = {0g, b’
m Apply L'Hopital’s rule:

1

= nIi_)rgo Inn2 (Recall that < Inx = 1/x)

L'Hopital Example

?
nlog, n € O(n?)

m
. nlog,n . log, n
m |lim g22 = |lim &
n—o00 n n—o0 n
Inn log, n
B = |lim Recall that log,(n) =
im 2 &5(M) = {0g, b’

m Apply L'Hopital’s rule:
1

— n d _
m= n||_>r20 - (Recall that - Inx = 1/x)
B = lim =0

n—oco nln2

What If We Want to Show That f(n) is NOT

O(g(n))

m Easiest approach is usually to show:

[im —=% =
n|—>rgo g(n) o0

