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Bayes’ Theorem

Theorem

p(F |E ) =
p(E |F )p(F )

p(E )

Where F and E are events such that p(F ) 6= 0 and p(E ) 6= 0.



Bayes’ Theorem Derivation

By definition of conditional probability:

p(F |E ) =
p(F ∩ E )

p(E )
and p(E |F ) =

p(F ∩ E )

p(F )

Therefore:

p(F ∩ E ) = p(F |E )p(E ) = p(E |F )p(F )

Substituting:

p(F |E ) =
p(E |F )p(F )

p(E )



Law of Total Probality

Partition sample space into disjoint events
S = A1 ∪ . . . ∪ An

Then p(B) =
∑

i p(B ∩ Ai)
Then p(B) =

∑
i p(B |Ai)p(Ai)

Binary case: p(B) = p(B |A)p(A) + p(B |A)p(A)



Revised Bayes’ Theorem

Theorem

p(F |E ) =
p(E |F )p(F )

p(E |F )p(F ) + p(E |F )p(F )

Where F and E are events such that p(F ) 6= 0 and p(E ) 6= 0.



Spam Detection Example

Gather some statistics about email:

p(Spam) = .9, p(Spam) = .1
p(Viagra|Spam) = .2, p(Viagra|Spam) = .001

Use this data to classify an incoming message that contains the word
Viagra:

P(Spam|Viagra) = P(Viagra|Spam)P(Spam)

P(Viagra)

=
P(Viagra|Spam)P(Spam)

p(Viagra|Spam)p(Spam) + p(Viagra|Spam)p(Spam)

=
.2× .9

.2 · .9 + .001× .1
≈ 0.999

(In practice, we would combine evidence from a large number of words.)
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