
CS159

Reminder
● Naming convention for Java Collection types:

ArrayList
– Array – Coded using Arrays “under the hood”
– List – Implements the List Interface

An ordered collection (also known as a sequence). The
user of this interface has precise control over where in
the list each element is inserted. The user can access
elements by their integer index (position in the list),
and search for elements in the list

http://docs.oracle.com/javase/7/docs/api/java/util/List.html

Question for Today

● Arrays are great. Why would we want any other
implementation?

● In general: why would Java provide multiple
implementation for their collection interfaces?
Why not just pick the best one?

Why Arrays Are Great
(And Not Great)

● Arrays store elements in one contiguous block of memory:

● Advantages of arrays:
– Very fast access to elements by index.

● Disadvantages of arrays:
– Let's look at an example...
– ArraysAreBad.java

int[] numbers = {22, 6, 14};

numbers

22 6 14

0 1 2

https://w3.cs.jmu.edu/spragunr/CS159_F15/lectures/linked_list/code/ArraysAreBad.java

Exercise...

letters

 null null

0 1

 ArrayList

 size

entries

0

● Trace the execution of the following code snippet. Draw the
contents of memory.

● Assume that array size is doubled when needed.

ArrayList<String> letters = new ArrayList<>();
letters.add("A");
letters.add(0, "B");
letters.add(1, "C");
letters.remove(0);

First line finished for you:

Exercise...

letters

“A” “C”

0 1

 ArrayList

 size

entries

2

ArrayList<String> letters = new ArrayList<>();
letters.add("A");
letters.add(0, "B");
letters.add(1, "C");
letters.remove(0);

2 3

ArrayList Weaknesses
● Insertion and deletion near the beginning is slooow

– Insertion:
● Every element to the right needs to be shifted right to make

space
– Deletion:

● Every element to the right needs to be shifted left to fill the gap
● Maybe a LinkedList (??) will do better. Let's try...

Linked Structures

● Linked structures “chain” elements using
references:

numbers

22 6 14 X

Linked Insertion

● This organization allows fast insertions/deletions
near the beginning.

● Adding 8:

numbers

22 6 14 X

8

numbers

22 6 14 X

8

Linked List
Implementation

● Linked objects are referred to as “nodes”

● Node.java
● NodeDriver.java

numbers

22 6 14 X

https://w3.cs.jmu.edu/spragunr/CS159_F15/lectures/linked_list/code/Node.java
https://w3.cs.jmu.edu/spragunr/CS159_F15/lectures/linked_list/code/NodeDriver.java

LinkedList
Implementation

● Inconvenient to work with “naked” nodes.
● Create a wrapper class to handle list logic:

● SimpleLinkedList.java
● ListDriver.java

numbers

22 6 14 X
size: 3
head:

https://w3.cs.jmu.edu/spragunr/CS159_F15/lectures/linked_list/code/SimpleLinkedList.java
https://w3.cs.jmu.edu/spragunr/CS159_F15/lectures/linked_list/code/ListDriver.java

LinkedList Weaknesses

● Can you think of situations where ArrayLists are
preferable to LinkedLists?

● ArraysAreGood.java

https://w3.cs.jmu.edu/spragunr/CS159_F15/lectures/linked_list/code/ArraysAreGood.java

Doubly-Linked Lists

● Java's LinkedList class is doubly-linked:

● What are the advantages to this approach?
● Are there any disadvantages?

numbers

 X 22

size: 3
head:
tail:

 6 14 X

Doubly-Linked Lists

● Java's LinkedList class is doubly-linked:

● What are the advantages to this approach?
– Efficiently add/remove near either end
– Efficient backward iteration

● Are there any disadvantages?
– The backward references require extra space

numbers

 X 22

size: 3
head:
tail:

 6 14 X

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

