
CS159

Nathan Sprague

April 3, 2017

Solving the Problem of Fixed Length Arrays

DynamicArray.java↗ DynamicArrayGeneric.java↗
DynamicArrayDriver.java↗

http://w3.cs.jmu.edu/spragunr/CS159/lectures/collections/code/DynamicArray.java
http://w3.cs.jmu.edu/spragunr/CS159/lectures/collections/code/DynamicArrayGeneric.java
http://w3.cs.jmu.edu/spragunr/CS159/lectures/collections/code/DynamicArrayDriver.java

ArrayList

Reminder:
Naming convention for Java Collection types: ArrayList

Array - Coded using arrays “under the hood”.

List - Implements the List interface↗.
“An ordered collection (also known as a sequence). The user
of this interface has precise control over where in the list each
element is inserted. The user can access elements by their
integer index (position in the list), and search for elements in
the list.”

ArrayList API↗

http://docs.oracle.com/javase/7/docs/api/java/util/List.html
http://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html

Collections

Collection - a class that stores multiple elements.

(Also a Java interface: Collection API↗)

We will distinguish between:

The interface to a collection - how we interact with the
collection.
The implementation of the collection - how the data is stored
”behind the scenes”.

Java Collections Overview↗
Java Collections Interfaces Overview↗

http://docs.oracle.com/javase/7/docs/api/java/util/Collection.html
http://docs.oracle.com/javase/7/docs/technotes/guides/collections/overview.html
http://docs.oracle.com/javase/tutorial/collections/interfaces/index.html

Java Arrays

Note that Java Arrays are in a category by themselves:

Not quite objects, not quite primitive types.
An array is NOT an object of type array

Has no methods.
cannot be subclassed.
does have fields: myArray.length

Advantages:

efficient.
familiar(?) syntax borrowed from other languages.

Disadvantages:

Fixed length.
Awkwardly different from all other collections.

Question

1 whichCourse["Nathan"] = "CS159"

2 System.out.println(whichCourse["Nathan"]);

1 Does not compile.

2 Compiles, but throws an exception at run time.

3 Runs without error.

(Assuming whichCourse is properly initialized.)

Too bad. This would be handy.

Question

1 whichCourse["Nathan"] = "CS159"

2 System.out.println(whichCourse["Nathan"]);

1 Does not compile.

2 Compiles, but throws an exception at run time.

3 Runs without error.

(Assuming whichCourse is properly initialized.)

Too bad. This would be handy.

HashMap

Recall the Naming Convention: HashMap

Map - Implements the Map interface↗.

A Map maps from a ”key” object to a ”value” object.
Also called a Dictionary or Associative Array.

Hash - Coded using a hash table (Something to look forward
to in CS240!)

key/value lookups are very efficient

HashMap API↗

Example:
HashMapDriver.java↗

http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/util/HashMap.html
http://w3.cs.jmu.edu/spragunr/CS159/lectures/collections/code/HashMapDriver.java

HashSet

Set - Implements the Set interface↗.

Stores an unordered collection of items.
No duplicates allowed.
Checks for containment are very efficient.

HashSet API↗

http://docs.oracle.com/javase/7/docs/api/java/util/Set.html
http://docs.oracle.com/javase/7/docs/api/java/util/HashSet.html

Using Collections Effectively

Let’s say we want a method that returns an ArrayList with all
duplicate elements removed. This seems reasonable:

1 public static ArrayList <String > noDuplicates(ArrayList <String > items)

2 {

3 ArrayList <String > result = new ArrayList <String >();

4 for (String item : items)

5 {

6 if (! result.contains(item))

7 {

8 result.add(item);

9 }

10 }

11 return result;

12 }

Issues?

Using Collections Effectively

More code than necessary, not very efficient.

1 public static ArrayList <String > noDuplicates(ArrayList <String > items)

2 {

3 ArrayList <String > result = new ArrayList <String >();

4 for (String item : items)

5 {

6 if (! result.contains(item)) // <-- This is slow!

7 {

8 result.add(item);

9 }

10 }

11 return result;

12 }

Using Collections Effectively

This is better:
1 public static ArrayList <String > noDuplicates(ArrayList <String > items)

2 {

3 return new ArrayList <String >(new HashSet <String >(items));

4 }

Or, if you prefer:

1 public static ArrayList <String > noDuplicates(ArrayList <String > items)

2 {

3 HashSet <String > setVersion = new HashSet <>(items);

4 ArrayList <String > noDups = new ArrayList <>(setVersion);

5 return noDups;

6 }

Warning: order of the items will not be retained.

Iterators

Iterators provide a common mechanism for iterating through
Java Collections.

An iterator is an object that implements the Iterator
Interface↗.

Example:
IteratorDemo.java↗

https://docs.oracle.com/javase/7/docs/api/java/util/Iterator.html
https://docs.oracle.com/javase/7/docs/api/java/util/Iterator.html
http://w3.cs.jmu.edu/spragunr/CS159/lectures/collections/code/IteratorDemo.java

Iterable

All classes that implement Collection implement the Iterable
interface↗.

This is the magic sauce behind for-each loops.

1 for (String s : someCollection)

2 System.out.println(s);

Is (pretty much) just a shorthand for:

1 Iterator <String > it = SomeCollection.iterator ();

2 String s;

3 while(it.hasNext ())

4 {

5 s = it.next ();

6 System.out.println(s);

7 }

http://docs.oracle.com/javase/7/docs/api/java/lang/Iterable.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Iterable.html

Question

1 String [] strings = new String [2];

2 strings [0] = "hello";

3 strings [1] = "bob";

4

5 for (String s : strings)

6 System.out.println(s);

1 Does not compile.

2 Compiles, but throws an exception at run time.

3 Runs without error.

Question

1 public static void main(String [] args)

2 {

3 String [] strings = new String [2];

4 strings [0] = "hello";

5 strings [1] = "bob";

6 printCollection(strings);

7 }

8

9 public static void printCollection(Iterable collection)

10 {

11 for (Object o : collection)

12 {

13 System.out.println(o);

14 }

15 }

1 Does not compile.

2 Compiles, but throws an exception at run time.

3 Runs without error.

Summary: When to Use What

Need efficient access by position. Know in advance exactly
how many elements will be stored.

Array or ArrayList

Need efficient access by position. Don’t know how many
elements will be stored.

ArrayList

Need to prevent repeats and efficiently check containment.

HashSet
TreeSet (if ordered iteration is important)

Need efficient lookup based on a key.

HashMap
TreeMap (if ordered iteration by key is important)

Summary: When to Use What

Need efficient access by position. Know in advance exactly
how many elements will be stored.

Array or ArrayList

Need efficient access by position. Don’t know how many
elements will be stored.

ArrayList

Need to prevent repeats and efficiently check containment.

HashSet
TreeSet (if ordered iteration is important)

Need efficient lookup based on a key.

HashMap
TreeMap (if ordered iteration by key is important)

Summary: When to Use What

Need efficient access by position. Know in advance exactly
how many elements will be stored.

Array or ArrayList

Need efficient access by position. Don’t know how many
elements will be stored.

ArrayList

Need to prevent repeats and efficiently check containment.

HashSet
TreeSet (if ordered iteration is important)

Need efficient lookup based on a key.

HashMap
TreeMap (if ordered iteration by key is important)

Summary: When to Use What

Need efficient access by position. Know in advance exactly
how many elements will be stored.

Array or ArrayList

Need efficient access by position. Don’t know how many
elements will be stored.

ArrayList

Need to prevent repeats and efficiently check containment.

HashSet
TreeSet (if ordered iteration is important)

Need efficient lookup based on a key.

HashMap
TreeMap (if ordered iteration by key is important)

Summary: When to Use What

Need efficient access by position. Know in advance exactly
how many elements will be stored.

Array or ArrayList

Need efficient access by position. Don’t know how many
elements will be stored.

ArrayList

Need to prevent repeats and efficiently check containment.

HashSet
TreeSet (if ordered iteration is important)

Need efficient lookup based on a key.

HashMap
TreeMap (if ordered iteration by key is important)

Summary: When to Use What

Need efficient access by position. Know in advance exactly
how many elements will be stored.

Array or ArrayList

Need efficient access by position. Don’t know how many
elements will be stored.

ArrayList

Need to prevent repeats and efficiently check containment.

HashSet
TreeSet (if ordered iteration is important)

Need efficient lookup based on a key.

HashMap
TreeMap (if ordered iteration by key is important)

Summary: When to Use What

Need efficient access by position. Know in advance exactly
how many elements will be stored.

Array or ArrayList

Need efficient access by position. Don’t know how many
elements will be stored.

ArrayList

Need to prevent repeats and efficiently check containment.

HashSet
TreeSet (if ordered iteration is important)

Need efficient lookup based on a key.

HashMap
TreeMap (if ordered iteration by key is important)

Summary: When to Use What

Need efficient access by position. Know in advance exactly
how many elements will be stored.

Array or ArrayList

Need efficient access by position. Don’t know how many
elements will be stored.

ArrayList

Need to prevent repeats and efficiently check containment.

HashSet
TreeSet (if ordered iteration is important)

Need efficient lookup based on a key.

HashMap
TreeMap (if ordered iteration by key is important)

