CS159

Nathan Sprague

February 2, 2015



Testing Happens at Multiple Levels

m Unit Testing - Test individual classes in isolation.

m Focus is on making sure that each method works according to
specification.

m Integration Testing - Test the interaction between classes.

m Validation Testing - Test the entire system in context.



Different Perspectives

m Black-box testing

m Develop tests on the basis of class specifications and
documentation.

m White-box testing

m Develop tests on the basis of implementation.
m Aim for high “code coverage”.



Testing Example

© 0 N O AW N

[ e e e
o A W N R O

public class Estimator

{
public static int totalCost(boolean fast,
{
int total = O0;
if (fast)
{
total += 5;
}
if (good)
{
total += 10;
}
return total;
}

boolean good)




Method Coverage

m 100% method coverage: testing code calls each method at
least once.

QTest
public void totalCostTestSlowBad () {
assertEquals (0, Estimator.totalCost(false, false));

~Aw N o

}

m Done! Reassuring?



Method Coverage

m 100% method coverage: testing code calls each method at
least once.

QTest
public void totalCostTestSlowBad () {
assertEquals (0, Estimator.totalCost(false, false));

~Aw N o

}

m Done! Reassuring?
m No, but better than NOT having 100% method coverage.



Statement Coverage

m 100% statement coverage: testing executes every statement.

public void totalCostTestFastGood () {
assertEquals (15, Estimator.totalCost(true, true));

1 QTest

2 public void totalCostTestSlowBad () {

3 assertEquals (0, Estimator.totalCost(false, false));
4 }

5

6 QTest

7

8

9

}

m Better? Happy?



Path Coverage

© 0 N O AW N

e~ =
o U W N = O

m 100% path coverage: testing exercises every possible path
through the code.

QTest
public void totalCostTestSlowBad () {
assertEquals (0, Estimator.totalCost(false, false));
}
QTest
public void totalCostTestFastGood () {
assertEquals (15, Estimator.totalCost(true, true));
}
QTest
public void totalCostTestSlowGood () {
assertEquals (10, Estimator.totalCost(false, true));
¥
QTest
public void totalCostTestFastBad () {
assertEquals (5, Estimator.totalCost(true, false));

}




Path Coverage

m 100% path coverage is typically considered an impractical
target.

m It is a useful idea to have in mind while developing tests.



Test-Driven Development

m Write tests first.

m Helps clarify specifications.
m Helps avoid mistakes in development.



Developing Test Cases

m To guarantee correctness, test every possible sequence of
method calls, with every possible input value.

m Usually not possible.

m Instead, look for boundary conditions
m Points where the behavior of the code should change
m Test at the boundaries and on either side.

m Also test erroneous inputs

m We'll work through an example in a few minutes...



Regression Testing

m Testing is not a one-time process.

m ldeally, unit tests are maintained along with the code.
m This makes it safer to change the code:
m All tests can be run after every change.



Brainstorm Some Tests...

1 | /*xx*

2 * Returns the point with the smallest x-coordinate

3 * among all points in the array. In the case of a tie,
4 * the point that appears first will be returned.

5 *

6 * @param points - An array of point objects

7 * @return - The leftmost point

8 * @throws - IllegalArgumentException If the length

9 * of the array is O.
10 * @throws - NullPointerException If the array, or any
11 * entries in the array,
12 * are null.

13 */

14

15 | public static Point findLeftmost(Point[] points)

16 throws IllegalArgumentException,

17 NullPointerException




