
CS159

Nathan Sprague

February 2, 2015

Testing Happens at Multiple Levels

Unit Testing - Test individual classes in isolation.

Focus is on making sure that each method works according to
specification.

Integration Testing - Test the interaction between classes.

Validation Testing - Test the entire system in context.

Different Perspectives

Black-box testing

Develop tests on the basis of class specifications and
documentation.

White-box testing

Develop tests on the basis of implementation.
Aim for high “code coverage”.

Testing Example

1 public class Estimator

2 {

3 public static int totalCost(boolean fast , boolean good)

4 {

5 int total = 0;

6 if (fast)

7 {

8 total += 5;

9 }

10 if (good)

11 {

12 total += 10;

13 }

14 return total;

15 }

16 }

Method Coverage

100% method coverage: testing code calls each method at
least once.

1 @Test

2 public void totalCostTestSlowBad () {

3 assertEquals (0, Estimator.totalCost(false , false));

4 }

Done! Reassuring?

No, but better than NOT having 100% method coverage.

Method Coverage

100% method coverage: testing code calls each method at
least once.

1 @Test

2 public void totalCostTestSlowBad () {

3 assertEquals (0, Estimator.totalCost(false , false));

4 }

Done! Reassuring?

No, but better than NOT having 100% method coverage.

Statement Coverage

100% statement coverage: testing executes every statement.

1 @Test

2 public void totalCostTestSlowBad () {

3 assertEquals (0, Estimator.totalCost(false , false));

4 }

5

6 @Test

7 public void totalCostTestFastGood () {

8 assertEquals (15, Estimator.totalCost(true , true));

9 }

Better? Happy?

Path Coverage

100% path coverage: testing exercises every possible path
through the code.

1 @Test

2 public void totalCostTestSlowBad () {

3 assertEquals (0, Estimator.totalCost(false , false));

4 }

5 @Test

6 public void totalCostTestFastGood () {

7 assertEquals (15, Estimator.totalCost(true , true));

8 }

9 @Test

10 public void totalCostTestSlowGood () {

11 assertEquals (10, Estimator.totalCost(false , true));

12 }

13 @Test

14 public void totalCostTestFastBad () {

15 assertEquals (5, Estimator.totalCost(true , false));

16 }

Path Coverage

100% path coverage is typically considered an impractical
target.

It is a useful idea to have in mind while developing tests.

Test-Driven Development

Write tests first.

Helps clarify specifications.
Helps avoid mistakes in development.

Developing Test Cases

To guarantee correctness, test every possible sequence of
method calls, with every possible input value.

Usually not possible.

Instead, look for boundary conditions

Points where the behavior of the code should change
Test at the boundaries and on either side.

Also test erroneous inputs

We’ll work through an example in a few minutes...

Regression Testing

Testing is not a one-time process.

Ideally, unit tests are maintained along with the code.

This makes it safer to change the code:

All tests can be run after every change.

Brainstorm Some Tests...

1 /**

2 * Returns the point with the smallest x-coordinate

3 * among all points in the array. In the case of a tie ,

4 * the point that appears first will be returned.

5 *

6 * @param points - An array of point objects

7 * @return - The leftmost point

8 * @throws - IllegalArgumentException If the length

9 * of the array is 0.

10 * @throws - NullPointerException If the array , or any

11 * entries in the array ,

12 * are null.

13 */

14

15 public static Point findLeftmost(Point [] points)

16 throws IllegalArgumentException ,

17 NullPointerException

