CS159

Nathan Sprague

April 8, 2015



Recursive Definitions

Merriam Websters definition of Ancestor:

Ancestor

One from whom a person is descended |[...]

Here is a recursive version:

Ancestor

One's parent.
or
The parent of one's ancestor.



Recursively Defined Functions

Classic example is the factorial function:

if n =0 then n! =1 (basis or initial conditions)
if n >0 then n! =nx (n—1)!




Recursive Methods / Recursive Programming

A recursive method is a method that includes a call to itself. It is
often straightforward to compute recursively defined functions
using recursive methods:

1 | int factorial(int n)

2 | {

3 int value;

4

5 if (n == 0)

6 value = 1;

7 else

8 value = n * factorial(mn - 1);
9

-
o

return value;

—
—
[}




Activation Records

Every method call results in an activation record which contains:

m Local variables and their values.

m The location (in the caller) of the call.



Tracing Recursive Methods...



Recursion is Not Always the Best Approach

1 | int factorial(int n)

2 | {

3 int value = 1;

4

5 for (int i=2; i <= n; i++)
6 {

7 value *= 1i;

8 }

9

-
o

return value;

-
j
[}




Recursive Problem Solving

Recursion is often a good idea when a problem can be solved by
breaking it into one or more smaller problems of the same form.
The process is:

m Figure out how to solve the easy case, i.e. the base case.

m Figure out how to move the hard case toward the easy case.



Recursion Pseudocode

Nearly every recursive method ends up looking like the following:

1

2 | recursiveMethod (input)

3 14

4 if (input represents a base case)

5 {

6 handle the base case directly.

7 }

8 else

9 {

10 call recursiveMethod one or more times
11 passing it only part of the input.
12 }

13 |}




Recursion Pseudocode Variations

Sometimes there is nothing to do for the base case. We just want

to stop:
1 | recursiveMethod (input)
2 |4
3 if (input is NOT the base case)
4 {
5 call recursiveMethod one or more times
6 passing it only part of the input.
7 }
8
9 // No else statement. Nothing to do for the base case.

-
o
[}




Example: Binary Search

Searching for a particular value in a sorted array.
(More than one base case.)

Failure!

1 public static int binarySearch(int[] array, int first, int last, int value)
2 | {

3 int mid;

4

5 if (first > last) // Easy/Base case. No elements left.
6

7 return - 1;

8 }

9

10 mid = (first + last) / 2;

11

12 if (array[mid] == value) // Another base case. Success!
13

14 return mid;

15 ¥

16 else if (array[mid] < value)

17 {

18 return binarySearch(array, mid + 1, last, value);
19 }

20 else

21 {

22 return binarySearch(array, first, mid - 1, value);
23 }

24 }




Aside: Tail Recursion

m A method is “tail recursive” if the recursive call is the final
operation.

m It is straightforward to replace tail recursion with a while-loop.

m If a recursive method is not tail-recursive, then the call stack
is doing important work: saving the state of an ongoing
computation so that it can resume when the recursive call
completes.



Tail Recursion

m A method is “tail recursive” if the recursive call is the final
operation.

m It is straightforward to replace tail recursion with a while-loop.
m If a recursive method is not tail-recursive, then the call stack
is doing important work: saving the state of an ongoing

computation so that it can resume when the recursive call
completes.

m Was the factorial method we saw earlier tail recursive?



Tail Recursion

m A method is “tail recursive” if the recursive call is the final
operation.

m It is straightforward to replace tail recursion with a while-loop.
m If a recursive method is not tail-recursive, then the call stack
is doing important work: saving the state of an ongoing

computation so that it can resume when the recursive call
completes.

m Was the factorial method we saw earlier tail recursive?
m No. Multiplication occurs after the recursive call.



lterative Binary Search

1 public static int binarySearchIterative(int[] array,int value)
2

3 int first, last, mid, result;

4 boolean found;

5

6 first = 0;

7 last = array.length - 1;

8

9 result = -1;

10 found = false;

11

12 while (first <= last && !found) // Check for "base cases"
13 {

14 mid = (first + last) / 2;

15 if (array[mid] == value)

16 {

17 result = mid;

18 found = true;

19

20 else if (arrayl[mid] < value)

21

22 first = mid + 1; // "Recursively" search right
23 s

24 else

25 {

26 last = mid - 1; // "Recursively" search left
27 s

28 }

29

30 return result;

31 ¥




The Coin Problem

Determine the minimum number of coins needed to make change
for a given amount.
m The easy case:
m We can use a single coin.
m Reducing the hard case:

m Try every way of splitting the amount into two parts: j and
amount - j

m recursively find minimum coin solution for each pair

m return total of the best split.

m Let's look at the code...



