
CS159

Review Class Design
“Algorithm”

● Good for tackling “designer's block”

Some Criteria for
Evaluating Designs

● Coupling:
– The degree to which two classes (or methods) are “tied

together.” How likely is it that changing the internals of
one will require modification of the other.

– We aim for LOW coupling.
● Cohesion:

– The degree to which the components of a class “hang
together”.

– We aim for HIGH cohesion

https://en.wikipedia.org/wiki/Coupling_(computer_programming)
https://en.wikipedia.org/wiki/Cohesion_(computer_science)

Some Design Proposals

● Let's combine the GUI code and the SeatingChart
class. Each call to step or solve can automatically
refresh the display!

Some Design Proposals

● Let's combine the GUI code and the SeatingChart
class. Each call to step or solve can automatically
refresh the display!
– Reduces Cohesion
– Makes it harder to test and reuse the SeatingChart

logic. Makes it harder to modify the GUI.

Some Design Proposals

● Let's give Student objects a reference to the
SeatingChart they are in, and give them
responsibility for moving themselves:

bob.moveTo(3, 5)
logic is similar to placeStudent
no longer need setRow + setColumn methods?

Some Design Proposals
● Let's give Student objects a reference to the SeatingChart

they are in, and give them responsibility for moving
themselves:

bob.moveTo(3, 5)
logic is similar to placeStudent
no longer need setRow + setColumn methods?

– Not actually a bad idea, but it does increase coupling. In this
design the Student class needs to “know about” the
SeatingChart class.

Some Design Proposals

● Let's give Student objects a reference to the
SeatingChart they are in, and give them
responsibility for moving themselves:

bob.moveTo(3, 5)

– Not actually a bad idea, but it does increase coupling.
In this design the Student class needs to “know about”
the SeatingChart class.

Some Design Proposals

● Let's add code to the Student class for
abbreviating names:

getName() → “Nathan Sprague”
getAbbreviatedName → “N. Sprague”

Splits the string, pulls out the first letter etc.
● (Users have requested this as an option)

Some Design Proposals
● Let's add code to the Student class for abbreviating names:

getName() → “Nathan Sprague”
getAbbreviatedName → “N. Sprague”

Splits the string, pulls out the first letter etc.
● (Users have requested this as an option)

– Lowers cohesion. Perhaps create a Name class, or a Utility class
that can perform these conversions.

– Otherwise, introducing a Teacher class will require us to copy-
paste this functionality.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

