
CS159

Nathan Sprague

November 11, 2013



Solving the Problem of Fixed Length Arrays

DynamicArray.java↗ DynamicArrayDriver.java↗

http://w3.cs.jmu.edu/spragunr/CS159/lectures/collections/code/DynamicArray.java
http://w3.cs.jmu.edu/spragunr/CS159/lectures/collections/code/DynamicArrayDriver.java


ArrayList

Naming convention for Java Collection types: ArrayList

Array - Coded using arrays “under the hood”.

List - Implements the List interface↗.

ArrayList API↗

http://docs.oracle.com/javase/7/docs/api/java/util/List.html
http://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html


Collections

Collection - a class that stores multiple elements.

We will distinguish between:

The interface to a collection - how we interact with the
collection.
The implementation of the collection - how the data is stored
”behind the scenes”.

Java Collections Overview↗
Java Collections Interfaces Overview↗

http://docs.oracle.com/javase/7/docs/technotes/guides/collections/overview.html
http://docs.oracle.com/javase/tutorial/collections/interfaces/index.html


Java Arrays

Note that Java Arrays are in a category by themselves:

Not quite objects, not quite primitive types.
An array is NOT an object of type array

Has no methods.
cannot be subclassed.
does have fields: myArray.length

Advantages:

efficient.
familiar(?) syntax borrowed from other languages.

Disadvantages:

Fixed length.
Awkwardly different from all other collections.



Question

1 ArrayList <Integer > nums = new ArrayList <Integer >();

2 nums.add (150);

3 nums.add (200);

4 System.out.println(nums.get (1). toString ());

1 Does not compile.

2 Compiles, but throws an exception at run time.

3 Runs without error.



Autoboxing

What is going on here?

Java automatically converts primitive types to reference types
when necessary.
nums.add(150);

silently becomes:
nums.add(new Integer(150));



Question

1 whichCourse["Nathan"] = "CS159"

2 System.out.println(whichCourse["Nathan"]);

1 Does not compile.

2 Compiles, but throws an exception at run time.

3 Runs without error.

(Assuming whichCourse is properly initialized.)

Too bad. This would be handy.



Question

1 whichCourse["Nathan"] = "CS159"

2 System.out.println(whichCourse["Nathan"]);

1 Does not compile.

2 Compiles, but throws an exception at run time.

3 Runs without error.

(Assuming whichCourse is properly initialized.)

Too bad. This would be handy.



HashMap

Recall the Naming Convention: HashMap

Map - Implements the Map interface↗.

A Map maps from a ”key” object to a ”value” object.
Also called a Dictionary or Associative Array.

Hash - Coded using a hash table (Something to look forward
to in CS240!)

HashMap API↗

Example:
HashMapDemo.java↗

http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/util/HashMap.html
http://w3.cs.jmu.edu/spragunr/CS159/lectures/collections/code/HashMapDemo.java


Iterators

Iterators provide a common mechanism for iterating through
Java Collections.

An iterator is an object that implements the Iterator
Interface↗.

Example:
IteratorDemo.java↗

http://docs.oracle.com/javase/7/docs/api/java/util/Iterator.html
http://docs.oracle.com/javase/7/docs/api/java/util/Iterator.html
http://w3.cs.jmu.edu/spragunr/CS159/lectures/collections/code/IteratorDemo.java


Iterable

Most Java Collection types implement the Iterable interface↗.

This is the magic sauce behind for-each loops.

1 for (String s : someCollection)

2 System.out.println(s);

Is (pretty much) just a shorthand for:

1 Iterator <String > it = SomeCollection.iterator ();

2 String s;

3 while(it.hasNext ())

4 {

5 s = it.getNext ();

6 System.out.println(s);

7 }

http://docs.oracle.com/javase/7/docs/api/java/util/Iteratable.html


Question

1 String [] strings = new String [2];

2 strings [0] = "hello";

3 strings [1] = "bob";

4

5 for (String s : strings)

6 System.out.println(s);

1 Does not compile.

2 Compiles, but throws an exception at run time.

3 Runs without error.



Question

1 public static void main(String [] args)

2 {

3 String [] strings = new String [2];

4 strings [0] = "hello";

5 strings [1] = "bob";

6 printCollection(strings );

7 }

8

9 public static void printCollection(Iterable collection)

10 {

11 for (Object o : collection)

12 {

13 System.out.println(o);

14 }

15 }

1 Does not compile.

2 Compiles, but throws an exception at run time.

3 Runs without error.


