
Multiple Methods
Java programs are organized into classes, each of which has one or more methods, each of
which has one or more statements. Writing methods allows you to break down a complex
program into smaller blocks of reusable code.

Content Learning Objectives

After completing this activity, students should be able to:

• Apply methods from the Math class based on their documentation.

• Explain the syntax of a method declaration (parameters and return type).

• Draw a diagram that shows the call stack at a given point of execution.

Process Skill Goals

During the activity, students should make progress toward:

• Tracing the execution of methods to determine contents of memory. (Critical Thinking)

Copyright © 2019 Chris Mayfield. This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.



Model 1 Math Methods

Consider the following methods defined in the Math class:

public static int abs(int a)

public static double log(double a)

public static double pow(double a, double b)

public static double random()

public static int subtractExact(int x, int y)

Note this list isn’t exhaustive; Math has over 70 methods in total. To invoke methods from
another class (like Math), you must first specify the class name:

value = abs(-5); // Error: cannot find symbol

value = Math.abs(-5); // correct

The period in this example is called the dot operator. When reading the above code out loud,
you would say “math dot abs”. Here is the Java documentation for the methods listed above:

Modifier and Type Method and Description

static int abs(int a)

Returns the absolute value of
an int value.

static double log(double a)

Returns the natural logarithm (base e) of
a double value.

static double pow(double a, double b)

Returns the value of the first argument
raised to the power of the second
argument.

static double random()

Returns a double value with a positive
sign, greater than or equal to 0.0 and less
than 1.0.

static int subtractExact(int x, int y)

Returns the difference of the arguments,
throwing an exception if the result
overflows an int.

Questions (15 min) Start time:

1. What type of value does Math.random() return? Give an example of what it would look like.



2. When defining a method (like random or abs), what do you need to specify before the method
name and after the method name?

3. Define a method named average that takes two integers named x and y and returns a double.
Don’t write any semicolons or braces.

4. When invoking a method, what do you need to specify before the method name and after the
method name?

5. For each method in Model 1, write a Java statement that invokes it and assigns the result to
a variable.

What you wrote for Question #3 is called the method’s signature. The variables declared inside
the parentheses are called parameters. When invoking a method, the values you provide are called
arguments. Since arguments will be assigned to parameters, their types must be compatible.

6. How many parameters and arguments does each method have? In the table below, what is
the relationship between the last two columns?

Method # Params # Args

abs

log

pow

random

subtractExact



7. Consider the statement System.out.println("Price: " + price); where the value of
price is 9.99. What is the argument that println receives?

8. Consider the statement System.out.printf("Price: %f", price); where the value of
price is 9.99. Why does println use plus and printf use comma to specify the arguments?

IMPORTANT: Never use + (string concatenation) with printf. You might accidentally add values to
the format string itself, rather than substitute them.

Model 2 Invoke and Return

Each statement in this program invokes (or calls) a method. At the end of a method, Java returns
to where it was invoked. The list of events on the right illustrates how the program runs.

1 public class Model {

2

3 public static void main(String[] args) {

4 System.out.println("First line.");

5 threeLine();

6 System.out.println("Second line.");

7 }

8

9 public static void newLine() {

10 System.out.println();

11 }

12

13 public static void threeLine() {

14 newLine();

15 newLine();

16 newLine();

17 }

18

19 }

INVOKE println

RETURN to line 5

INVOKE threeLine

INVOKE newLine

INVOKE println

RETURN to line 11

RETURN to line 15

INVOKE newLine

INVOKE println

RETURN to line 11

RETURN to line 16

INVOKE newLine

INVOKE println

RETURN to line 11

RETURN to line 17

RETURN to line 6

INVOKE println

RETURN to line 7



Questions (15 min) Start time:

9. How many lines of source code invoke the println method?

10. How many times is println invoked when the program runs?

11. For each INVOKE on the right, draw an arrow to the corresponding line of code. (Plan ahead
so that crossing lines will still be legible.)

12. What is the output of the program? Please write \n to show each newline character.

13. When Java sees a name like x, count, or newLine, how can it tell whether it’s a variable or a
method? (Hint: syntax)

14. What is the difference between a method and a variable? What do they have in common?

15. In your own words, describe what methods are for. Why not just write everything in main?



Model 3 Stack Diagrams

Each method has its own area of memory to store parameters and other variables. When a
method is invoked, Java allocates this memory on the call stack. For convenience, we draw
“stack” diagrams upside down.

Note: The signature for System.out.println is public void println(String x).

public static void printTime(int hour, int minute) {

System.out.println(hour + ":" + minute);

}

public static void main(String[] args) {

int hour = 11;

int minute = 59;

printTime(12, 15);

}

Questions (15 min) Start time:

16. Based on the diagram, how many methods does the program call?

17. Based on the diagram, how many variables does the program have?

18. How do stack diagrams extend the memory diagrams we’ve seen previously?



19. How is it possible that two variables with the same name can have different values?

20. Draw a stack diagram to show the state of memory just before println is called. Assume
the user inputs the value 10. (You should be able to do this kind of math without a calculator.)

public static void show(double c) {

double f;

String str;

f = c * 1.8 + 32;

str = String.format("%.1f C = %.1f F\n", c, f);

System.out.println(str);

}

public static void main(String[] args) {

double c;

Scanner in = new Scanner(System.in);

System.out.print("Enter temperature in Celsius: ");

c = in.nextDouble();

show(c);

}

21. What is the difference between the String.format method (used in the previous question)
and System.out.printf?


	Math Methods
	Invoke and Return
	Stack Diagrams

