
CS139 – static and this

Warm Up Question
● Here is a (functionally correct) solution to our

earlier statistics lab.
● Any style problems?

 /**
 * Calculate the mean of a collection of doubles.
 *
 * @param numbers - The array of doubles
 * @return The mean, or Double.NaN if the array is empty or null
 */
 public static double mean(double[] numbers) {
 double average = 0;
 double result;

 if (numbers == null || numbers.length == 0) {
 result = Double.NaN;
 } else {

 for (int i = 0; i < numbers.length; i++) {
 average += numbers[i];
 }
 result = average / numbers.length;
 }
 return result;
 }

Warm Up Question
● Here is a (functionally correct) solution to our

earlier statistics lab.
● Any style problems?

 /**
 * Calculate the mean of a collection of doubles.
 *
 * @param numbers - The array of doubles
 * @return The mean, or Double.NaN if the array is empty or null
 */
 public static double mean(double[] numbers) {
 double average = 0;
 double result;

 if (numbers == null || numbers.length == 0) {
 result = Double.NaN;
 } else {

 for (int i = 0; i < numbers.length; i++) {
 average += numbers[i];
 }
 result = average / numbers.length;
 }
 return result;
 }

This variable does not store an average!

Warm Up Question
● Here is a (functionally correct) solution to our

earlier statistics lab.
● Any style problems? Better.

 /**
 * Calculate the mean of a collection of doubles.
 *
 * @param numbers - The array of doubles
 * @return The mean, or Double.NaN if the array is empty or null
 */
 public static double mean(double[] numbers) {
 double sum = 0;
 double result;

 if (numbers == null || numbers.length == 0) {
 result = Double.NaN;
 } else {

 for (int i = 0; i < numbers.length; i++) {
 sum += numbers[i];
 }
 result = sum / numbers.length;
 }
 return result;
 }

this and static

● Let's look back at Cars.java …

Why Are Instance Fields
Private?

● The challenges of writing correct software:
http://www.viddler.com/v/42c8494f (38:00)

– This video was produced in 1992, OO programming
became popular in the mid to late 90's

http://www.viddler.com/v/42c8494f

Why Are Instance Fields
Private?

● The challenges of writing correct software:
http://www.viddler.com/v/42c8494f (38:00)

– This video was produced in 1992, OO programming became popular in the mid to late 90's

● encapsulation – Bundling data with the methods that act on that data
● data hiding – Preventing outside code from directly accessing data

– (Terms are often used interchangeably.)

● Goal is to create classes that can be treated as black boxes
– We don't need to know or care how they work to use them
– We only need to understand the functionality they provide

● Related to the idea of minimizing coupling.
● In response to the video: we want software that does have proximity of cause and

effect.

http://www.viddler.com/v/42c8494f

● Coding a social media
application
“FriendFaces”.

● Where is the flaw in
our data hiding?

import java.util.ArrayList;

public class Person {

 private String name;
 private ArrayList<Person> friends;

 public Person(String name) {
 this.name = name;
 friends = new ArrayList<Person>();
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public ArrayList<Person> getFriends() {
 return friends;
 }

 public void addFriend(Person newFriend) {
 friends.add(newFriend);
 }

 public String toString() {
 return "Person: " + name;
 }

}

● Coding a social media
application
“FriendFaces”.

● Where is the flaw in
our data hiding?

● Here

import java.util.ArrayList;

public class Person {

 private String name;
 private ArrayList<Person> friends;

 public Person(String name) {
 this.name = name;
 friends = new ArrayList<Person>();
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public ArrayList<Person> getFriends() {
 return friends;
 }

 public void addFriend(Person newFriend) {
 friends.add(newFriend);
 }

 public String toString() {
 return "Person: " + name;
 }

}

● Coding a social media
application
“FriendFaces”.

● Where is the flaw in
our data hiding?

● Fixed!

import java.util.ArrayList;

public class Person {

 private String name;
 private ArrayList<Person> friends;

 public Person(String name) {
 this.name = name;
 friends = new ArrayList<Person>();
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public ArrayList<Person> getFriends() {
 // Use ArrayList copy constructor!
 return new ArrayList<Person>(friends);
 }

 public void addFriend(Person newFriend) {
 friends.add(newFriend);
 }

 public String toString() {
 return "Person: " + name;
 }

}

Exercise...

● Create a copy constuctor for the Person class
(create a new Person that is exactly like an
existing Person.)

 public Person(Person other) {

 }

Exercise...

● Create a copy constuctor for the Person class
(create a new Person that is exactly like an
existing Person.)

 public Person(Person other) {

 name = other.name;
 friends = other.friends;
 }

OK???

Exercise...

● Create a copy constuctor for the Person class
(create a new Person that is exactly like an
existing Person.)

 public Person(Person other) {

 name = other.name;
 friends = other.friends;
 }

OK??? NO! Now we have two people
who share a single friend list.

Exercise...

● Create a copy constuctor for the Person class
(create a new Person that is exactly like an
existing Person.)

 public Person(Person other) {

 name = other.name;
 friends = new ArrayList<Person>(other.friends);
 }

OK???

Exercise...

● Create a copy constuctor for the Person class
(create a new Person that is exactly like an
existing Person.)

 public Person(Person other) {

 name = other.name;
 friends = new ArrayList<Person>(other.friends);
 }

OK??? Yes! Now the new person
has a copy of the list of friends.

Why don't we need to copy the name?
String is a reference type.

Exercise...

● Create a copy constuctor for the Person class
(create a new Person that is exactly like an
existing Person.)

 public Person(Person other) {

 name = other.name;
 friends = new ArrayList<Person>(other.friends);
 }

OK??? Yes! Now the new person
has a copy of the list of friends.

Why don't we need to copy the name?
String is a reference type. String is
immutable. No way for it to be changed
without my permission (or at all).

Exercise...

● Create a copy constuctor for the Person class
(create a new Person that is exactly like an
existing Person.)

 public Person(Person other) {

 name = other.getName();
 friends = other.getFriends();

 }

OK???

Exercise...

● Create a copy constuctor for the Person class
(create a new Person that is exactly like an
existing Person.)

 public Person(Person other) {

 name = other.getName();
 friends = other.getFriends();

 }

OK??? Yes! This is the best
solution. getFriends has already
been coded to return a copy.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

