£,
&P IAMES
MADISON

UNIVERSITY.

* Variable — Named location in memory.
* Primitive variable — The value is actually stored at
that location.
int number;
* Reference variable — contains the address of an
object.
String name;

Scanner input;

* Not possible to call methods on primitive
variables:

int count = 3;
count .someMethod(); // NOOOO!
* We can call methods on objects:

— Scanner input = new Scanner(System.in);

— count = scanner.nextInt();

* Cast — Ask Java to perform a type conversion that
it wouldn't otherwise do.

byte small = 10;
int bigger = 10;
double huge = 10;

small = bigger; // Won't compile!
small = huge; // Won't compile!
bigger = huge; // Won't compile!
small (byte)bigger; // OK!

small = (byte)huge; // OK!
bigger = (int)huge; // OK!

* Scenario: We are developing an application for a
shipping company to help them load trucks more
efficiently:

* Repeat the following:

— Query user for the number of packages that need to be
shipped and their weight.

— Select a truck that has enough capacity for the load. Try to
fill one truck as much as possible before loading another.

— Report when a truck is ready to depart.

* Steps:

Break the problem down into manageable, testable
parts

Design methods for addressing each part
Stub out the methods
Develop and test the methods in isolation

Combine the methods to solve the overall problem

* Obtain user input:

— What trucks are available

— # packages that need to be shipped along with their weight

* Perform computations

— Select the next truck

* Compute how many packages each truck can hold
* How much space remains after adding the load

* Compare across all trucks

* Generate output..

/**

* Calculate the number of additional packages we can add to a partially
* loaded truck without exceeding a weight limit.

%

* @param totalCapacity The total capacity of the truck in pounds

* @param numLoaded The number of packages that have already been loaded
* @param packageWeight The weight of each individual package

* @return the number of additional packages that can be loaded without
& exceeding the capacity

*/

public static int packageCapacity(int totalCapacity, int numLoaded,
int packageWeight) {
return -1;

totalCapacity numLoaded packageWeight Expected output

0 0 10
1000 0 250
1000 0 501
2000 2 1000
2000 1 1000
2000 1 1001
2000 1 501

totalCapacity numLoaded packageWeight Expected output

0 0 10 0
1000 0 250 4
1000 0 501 1
2000 2 1000 0
2000 1 1000 1
2000 1 1001 0
2000 1 501 2

Test Driver...

public class ShippingDriver {
public static void main(String[] args) {

testPackageCapacity() ;

}

public static void testPackageCapacity () {
int capacity;

capacity = Shipping.packageCapacity(0, 0, 10);
System.out.println ("Expected: 0" + " Actual: " + capacity);
capacity = Shipping.packageCapacity (1000, 0, 250);
System.out.println ("Expected: 4" + "™ Actual: " + capacity);
capacity = Shipping.packageCapacity (1000, 0, 501);
System.out.println ("Expected: 1" + "™ Actual: " + capacity);
capacity = Shipping.packageCapacity (2000, 2, 1000);
System.out.println ("Expected: 0" + " Actual: " + capacity);
capacity = Shipping.packageCapacity (2000, 1, 1000) ;
System.out.println ("Expected: 1" + " Actual: " + capacity);
capacity = Shipping.packageCapacity (2000, 1, 1001);
System.out.println ("Expected: 0" + "™ Actual: " + capacity);
capacity = Shipping.packageCapacity (2000, 1, 501);
System.out.println ("Expected: 2" + " Actual: " + capacity);

We will see less cumbersome way of doing this later in the semester...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

