
CS139 – References, Testing

Reference Variables vs
Primitive Variables

● Variable – Named location in memory.
● Primitive variable – The value is actually stored at

that location.
int number;

● Reference variable – contains the address of an
object.

String name;
Scanner input;

Objects Tie Together
Data and Methods

● Not possible to call methods on primitive
variables:

int count = 3;
count.someMethod(); // NOOOO!

● We can call methods on objects:
– Scanner input = new Scanner(System.in);
– count = scanner.nextInt();

Casting Primitive Types

● Cast – Ask Java to perform a type conversion that
it wouldn't otherwise do.

 byte small = 10;
 int bigger = 10;
 double huge = 10;

 small = bigger; // Won't compile!
 small = huge; // Won't compile!
 bigger = huge; // Won't compile!

 small = (byte)bigger; // OK!
 small = (byte)huge; // OK!
 bigger = (int)huge; // OK!

Writing and Testing
Methods

● Scenario: We are developing an application for a
shipping company to help them load trucks more
efficiently:

● Repeat the following:
– Query user for the number of packages that need to be

shipped and their weight.
– Select a truck that has enough capacity for the load. Try to

fill one truck as much as possible before loading another.
– Report when a truck is ready to depart.

Development Process

● Steps:
– Break the problem down into manageable, testable

parts
– Design methods for addressing each part
– Stub out the methods
– Develop and test the methods in isolation
– Combine the methods to solve the overall problem

Shipping Application
Task Decomposition

● Obtain user input:
– What trucks are available
– # packages that need to be shipped along with their weight

● Perform computations
– Select the next truck

● Compute how many packages each truck can hold
● How much space remains after adding the load
● Compare across all trucks

● Generate output…

Stubbed Method

 /**
 * Calculate the number of additional packages we can add to a partially
 * loaded truck without exceeding a weight limit.
 *
 * @param totalCapacity The total capacity of the truck in pounds
 * @param numLoaded The number of packages that have already been loaded
 * @param packageWeight The weight of each individual package
 * @return the number of additional packages that can be loaded without
 * exceeding the capacity
 */
 public static int packageCapacity(int totalCapacity, int numLoaded,
 int packageWeight) {
 return -1;
 }

Developing Test Cases
totalCapacity numLoaded packageWeight Expected output

0 0 10

1000 0 250

1000 0 501

2000 2 1000

2000 1 1000

2000 1 1001

2000 1 501

Developing Test Cases
totalCapacity numLoaded packageWeight Expected output

0 0 10 0

1000 0 250 4

1000 0 501 1

2000 2 1000 0

2000 1 1000 1

2000 1 1001 0

2000 1 501 2

Test Driver...

We will see less cumbersome way of doing this later in the semester...

public class ShippingDriver {

 public static void main(String[] args) {

 testPackageCapacity();
 }

 public static void testPackageCapacity() {
 int capacity;

 capacity = Shipping.packageCapacity(0, 0, 10);
 System.out.println("Expected: 0" + " Actual: " + capacity);

 capacity = Shipping.packageCapacity(1000, 0, 250);
 System.out.println("Expected: 4" + " Actual: " + capacity);

 capacity = Shipping.packageCapacity(1000, 0, 501);
 System.out.println("Expected: 1" + " Actual: " + capacity);

 capacity = Shipping.packageCapacity(2000, 2, 1000);
 System.out.println("Expected: 0" + " Actual: " + capacity);

 capacity = Shipping.packageCapacity(2000, 1, 1000);
 System.out.println("Expected: 1" + " Actual: " + capacity);

 capacity = Shipping.packageCapacity(2000, 1, 1001);
 System.out.println("Expected: 0" + " Actual: " + capacity);

 capacity = Shipping.packageCapacity(2000, 1, 501);
 System.out.println("Expected: 2" + " Actual: " + capacity);

 }
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

