Advanced Strings

Many interesting problems involve manipulating sequences of text data. You've learned about strings before, but this activity provides a more in-depth look at what strings can do.

Manager:	Recorder:
Presenter:	Reflector:

Content Learning Objectives

After completing this activity, students should be able to:

- Explain the syntax and meaning of slice operations, with and without indexes.
- Name four methods that strings provide, and describe what each method does.

Process Skill Goals

During the activity, students should make progress toward:

• Gaining insight about data structures from many examples. (Information Processing)

Model 1 Indexing and Slicing

A string is a sequence of characters in single quotes (') or double quotes ("). You can access individual characters using square brackets (e.g., dna[0]).

You can also use *slice notation* (e.g., dna[4:8]) to refer to a *range* of characters. All types of sequences (including list and tuple) support indexing and slicing.

Python code	Shell output	
dna = 'CTGACGACTT'		
dna[5]	' G '	
dna[10]	IndexError: index out of range	
len(dna)	10	
dna[:5]	'CTGAC'	
dna[5:]	'GACTT'	
dna[5:10]	'GACTT'	
triplet = dna[2:5]		
print(triplet)	GAC	
dna[-5]	' G '	
dna[-10]	'C'	
dna[:-5]	'CTGAC'	
dna[-5:]	'GACTT'	
triplet = dna[-4:-1]		
print(triplet)	'ACT'	

Questions	(20	min)
-----------	-----	------

Start time:

1. What is the *positive index* of each character in the dna string? Check your answers above.

Character: C T G A C G A C T T

Index:

2. What is the *negative index* of each character in the dna string? Check your answers above.

Character: C T G A C G A C T T

Index:

3. Based on the previous two questions, what values are dna[2] and dna[-2]? Explain your answers in general terms.
4. Explain the IndexError in Model 1. What is the range of indexes for the dna string?
5. Consider the notation of the operator [m:n] for slicing the string.
a) Is the value at the start of the resulting string the same as the value at index m ? (i.e., $dna[m]$) If not, describe what it is.
b) Is the value at the end of the resulting string the same as the value at index n? (i.e., dna[n]) If not, describe what it is.
c) Explain what the code means when only a single number is referenced when in a slice, such as [m:] or [:n].
6 . What is the simplest way to get the first three characters of dna? What is the simplest way to get the last three characters?
7. Write a Python expression that slices 'GACT' from dna using positive indexes. Then write another expression that slices the same string using negative indexes.
8. Write a Python assignment statement that uses the len function to assign the last letter of dna to the variable last.
9 . Write a Python assignment statement that uses a negative index to assign the last letter of dna to the variable last.

Model 2 Common String Methods

Strings have *methods* (built-in functions) that can be called using dot notation. The following table shows three examples: lower(), split(), and replace().

Python Shell (10 min)

Start time:

Divide into pairs to complete the table. Have one team member run each line in a Python shell. Have another team member record the results. Briefly discuss the results while you work.

Python code	Shell output
dna = 'CTGACGACTT'	
dna.lower()	
print(dna)	
lowercase = dna.lower()	
<pre>print(lowercase)</pre>	
dnalist = list(dna)	
<pre>print(dnalist)</pre>	
dnalist.reverse()	
<pre>print(dnalist)</pre>	
type(dna)	
<pre>dna = dna.split('A')</pre>	
print(dna)	
type(dna)	
<pre>dna.replace('C', 'g')</pre>	
<pre>print(dna[0])</pre>	
type(dna[0])	
<pre>dna[0].replace('C', 'g')</pre>	
print(dna)	

Questions (15 min)

Start time:

10. Does the lower method change the contents of the dna string? Justify your answer.

11. Describe the list function—what does list(dna) return in Model 2?
12. Why is it possible to call the replace method on dna[0] but not dna?
13. Consider the application of a method on a variable:a) Does a string variable change after applying a method? Provide justification.
b) Does a list variable change after applying a method? Provide justification.
c) Identify the data type that is <i>immutable</i> (i.e., the value never changes).
14 . Write a single statement to change the final contents of dna to ['CTG', 'cc', 'CTT']. Confirm that your code works in a Python Shell.
15 . Why do you think Python has a replace method for strings but not for lists?
16. You can view the methods available to an object by calling the $dir()$ or $help()$ function. Call $dir(dna)$ and $help(dna)$ in a Python shell, and describe the difference between the two.
17. See https://docs.python.org/3/library/stdtypes.html#string-methods for a summary of all string methods. Name several other string methods not shown in Model 2.