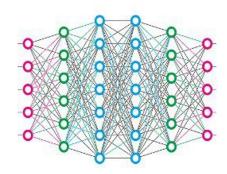
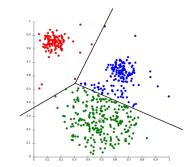
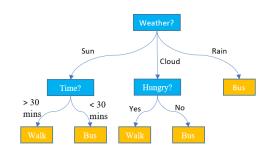
CS 445 Introduction to Machine Learning

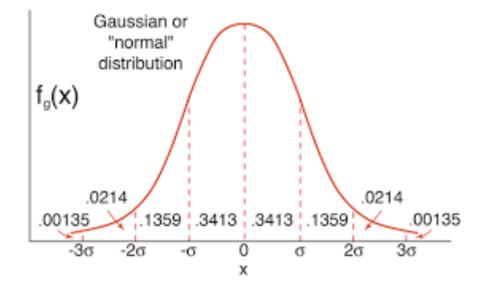
Normal Isn't Everything

Instructor: Dr. Kevin Molloy









PA 1 Review

44	18	8	5
23	31	8	13
12	16	21	26
9	11	11	44

Plan for Today

Last time:

• Naïve Bayes as a Classifier

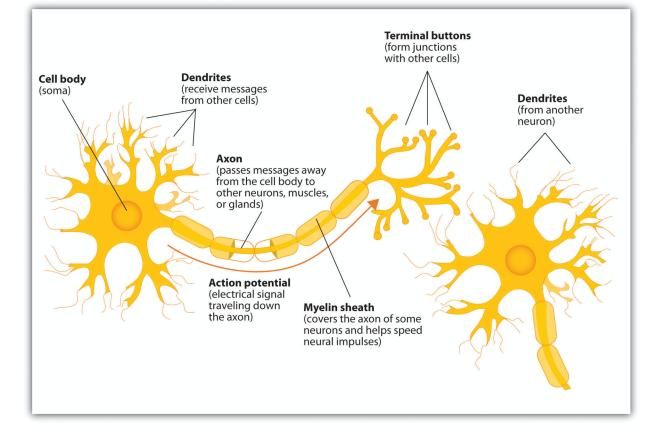
Today:

Start our Discussion on Neural Networks

Another Approach

Neurons

- Neurons communicate using discrete electrical signals called "spikes" (or action potentials)
- "Spikes" travel along axons, and reach terminals, where neurotransmitters are released.
- Postsynaptic neurons respond by allowing current to flow in (or out).
- If voltage crosses a threshold a spike is created.



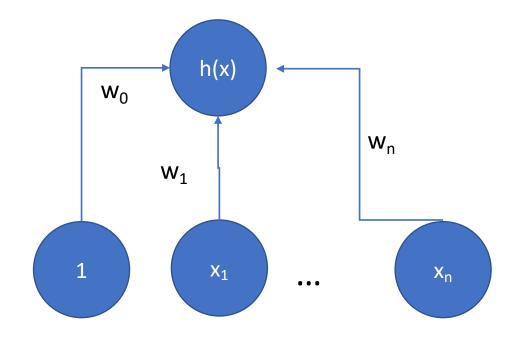
Multivariate Linear Regression

Multi-dimensional

 $h(x_1, x_2, \dots, x_n) = w_0 + w_1 x_1 + \dots + w_n x_n$

OR

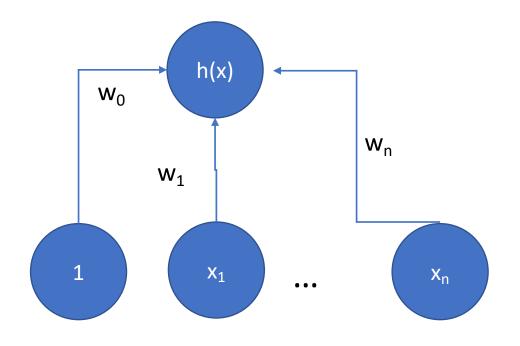
$$h(x) = w^T x$$



Linear Regression – The Neural View

Multi-dimensional

- Input: x
- Desired output: y
- Weight = w
 - $h(x) = w^T x$
- Given a set of inputs and a corresponding desired output, we need to select *w*.
- What is going on here?



Gradient Descent

Gradient Descent

One Approach

- 1. Take the derivative of the function f'(w)
- 2. Guess a value for w:
- 3. Move a little bit according to the derivative.

 $\widehat{w} = \widehat{w} - \eta f'(\widehat{w})$

Partial Derivatives

• Derivative of a function of multiple variables, with all but the variable of interest held constant.

$$f(x,y) = x^2 + xy^2$$

$$f_{x}(x,y) = 2x + y^{2} \qquad f_{y}(x,y) = 2xy$$

$$OR \qquad OR \qquad OR$$

$$\frac{\partial f(x,y)}{\partial x} = 2x + y^{2} \qquad \frac{\partial f(x,y)}{\partial y} = 2xy$$

Gradient

• The gradient is just the generalization of the derivative to multiple dimensions.

$$\nabla f(\mathbf{w}) = \begin{bmatrix} \frac{\partial f(\mathbf{w})}{\partial w_1} \\ \frac{\partial f(\mathbf{w})}{\partial w_2} \\ \vdots \\ \frac{\partial f(\mathbf{w})}{\partial w_n} \end{bmatrix}$$

• Gradient descent update:

$$\widehat{\mathbf{w}} \leftarrow \widehat{\mathbf{w}} - \eta \nabla f(\widehat{\mathbf{w}})$$

Gradient Descent for MVLR

• Error for the multi-dimensional case:

$$Error_{E}(\mathbf{w}) = \sum_{e \in E} \frac{1}{2} (y_{e} - \mathbf{w}^{\mathsf{T}} \mathbf{x}_{e})^{2}$$

$$\frac{\partial Error_{E}(\mathbf{w})}{\partial w_{i}} = \sum_{e \in E} (y_{e} - \mathbf{w}^{\mathsf{T}} \mathbf{x}_{e}) (-x_{e,i})$$

$$= -\sum_{e\in E} (y_e - \mathbf{w}^{\mathsf{T}}\mathbf{x}) x_{e,i}$$

• The new update rule:

$$w_i \leftarrow w_i + \eta \sum_{e \in E} (y_e - \mathbf{w}^{\mathsf{T}} \mathbf{x}) x_{e,i}$$

• Vector version:

$$\mathbf{w} \leftarrow \mathbf{w} + \eta \sum_{e \in E} (y_e - \mathbf{w}^T \mathbf{x}) \mathbf{x}_e$$

Analytical Solution

$$\mathbf{w} = (X^T X)^{-1} X^T y$$

• Where X is a matrix with one input per row, y the vector of target values.

Lines

