CS 445

Introduction to Machine Learning

Normal Isn't Everything

Instructor: Dr. Kevin Molloy

PA 1 Review

44	18	8	5
23	31	8	13
12	16	21	26
9	11	11	44

Plan for Today

Last time:

- Naïve Bayes as a Classifier

Today:
Start our Discussion on Neural Networks

Another Approach

Neurons

- Neurons communicate using discrete electrical signals called "spikes" (or action potentials)
- "Spikes" travel along axons, and reach terminals, where neurotransmitters are released.
- Postsynaptic neurons respond by allowing current to flow in (or out).

- If voltage crosses a threshold a spike is created.

Multivariate Linear Regression

Multi-dimensional

$$
h\left(x_{1}, x_{2}, \ldots x_{n}\right)=w_{0}+w_{1} x_{1}+. .+w_{n} x_{n}
$$

OR

$$
h(x)=w^{T} x
$$

Linear Regression - The Neural View

Multi-dimensional

Input: x
Desired output: y
Weight = w

$$
h(x)=w^{T} x
$$

- Given a set of inputs and a corresponding
 desired output, we need to select w.
- What is going on here?

Gradient Descent

Gradient Descent

One Approach

1. Take the derivative of the function $f^{\prime}(w)$
2. Guess a value for w:
3. Move a little bit according to the derivative. $\widehat{w}=\widehat{w}-\eta f^{\prime}(\widehat{w})$

Partial Derivatives

- Derivative of a function of multiple variables, with all but the variable of interest held constant.

$$
f(x, y)=x^{2}+x y^{2}
$$

$$
\begin{array}{cc}
f_{x}(x, y)=2 \mathrm{x}+y^{2} & f_{y}(x, y)=2 \mathrm{xy} \\
\text { OR } & \text { OR } \\
\frac{\partial f(x, y)}{\partial x}=2 \mathrm{x}+y^{2} & \frac{\partial f(x, y)}{\partial y}=2 \mathrm{xy}
\end{array}
$$

Gradient

- The gradient is just the generalization of the derivative to multiple dimensions.

$$
\nabla f(\mathbf{w})=\left[\begin{array}{c}
\frac{\partial f(\mathbf{w})}{\partial w_{1}} \\
\frac{\partial f(\mathbf{w})}{\partial w_{2}} \\
\vdots \\
\frac{\partial f(\mathbf{w})}{\partial w_{n}}
\end{array}\right]
$$

- Gradient descent update:

$$
\widehat{\mathbf{w}} \leftarrow \widehat{\mathbf{w}}-\eta \nabla f(\widehat{\mathbf{w}})
$$

Gradient Descent for MVLR

- Error for the multi-dimensional case:

$$
\begin{gathered}
\operatorname{Error}_{E}(\mathbf{w})=\sum_{e \in E} \frac{1}{2}\left(y_{e}-\mathbf{w}^{\mathbf{T}} \mathbf{x}_{\mathbf{e}}\right)^{2} \\
\frac{\partial \operatorname{Error}_{E}(\mathbf{w})}{\partial w_{i}}=\sum_{e \in E}\left(y_{e}-\mathbf{w}^{\mathbf{T}} \mathbf{x}_{\mathbf{e}}\right)\left(-x_{e, i}\right) \\
=-\sum_{e \in E}\left(y_{e}-\mathbf{w}^{\mathbf{T}} \mathbf{x}\right) x_{e, i}
\end{gathered}
$$

- The new update rule:

$$
w_{i} \leftarrow w_{i}+\eta \sum_{e \in E}\left(y_{e}-\mathbf{w}^{\mathbf{T}} \mathbf{x}\right) x_{e, i}
$$

- Vector version:

$$
\mathbf{w} \leftarrow \mathbf{w}+\eta \sum_{e \in E}\left(y_{e}-\mathbf{w}^{\mathbf{T}} \mathbf{x}\right) \mathbf{x}_{\mathbf{e}}
$$

Analytical Solution

$$
\mathbf{w}=\left(X^{T} X\right)^{-1} X^{T} y
$$

- Where X is a matrix with one input per row, y the vector of target values.

Lines

