
CS 445
Introduction to Machine Learning

Unsupervised Learning
Clustering

Instructor: Dr. Kevin Molloy



Learning Objectives From Last Class
● Define unsupervised learning

● Hierarchical Clustering

○ Optimal clustering is intractable (minimize intracluster and maximize intercluster distances)

○ Heuristic algorithm uses bottom-up approach (or top-down)

○ Techniques for computing distances between individual members and clusters (which is a hyperparameter)

● Partitional Clustering (K-Means)

○ Approximation is used (Lloyd's method)

○ Sensitive to initial centroid location

○ Hyperparameter includes distance metric and the number of clusters k



Learning Objectives
• Revisit K-Means as a multi-objective optimization problem

• Define and sketch a density based clustering method

• Cluster evaluation



K-Means Clustering
• Partitional clustering

• Number of clusters defined in advanced (it is a 
hyperparameter)

• Each cluster has a centroid (which is computed 
and not part of the dataset)

• All data points belong to exactly 1 cluster

• Optimal K-Means clustering is NP-complete, use 
Lloyd's approximation method known

• Lloyd's method initially selects the centroids 
randomly (although there are other techniques 
for doing this)



Variance when running K-Means
• Final cluster assignments are highly dependent on the initial 

centroid location.
• Solution? Repeat the method several times and pick the "best"

clustering
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Where 𝑐! is the centroid and  𝐶! is the set of points assigned to cluster 
k, x are the individual points assigned to cluster k.

SSE is available from the scikit-learn kmeans object (kmeans.inertia_). 

Sum of square errors (SSE) is used to judge the 
quality of the solution.  This is also known as the 
objective function (what we are trying to minimize)



Selecting k
• When k = 1, the SSE/objective function is 873.



Selecting k
• When k = 1, SSE is  873.

• When k = 2, SSE is 173.1.
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Selecting k
• When k = 1, SSE is  873.

• When k = 2, SSE is 173.1.

• When k = 3, SSE s 133.6.

What happens when we pick k = n?

SSE goes to zero, but what value is it to have n
clusters of size 1.   



Looking for the "knee" in the SSE 

• The abrupt change at k = 2 is highly suggestive of two clusters in this data.  
This technique is known as "elbow" or "knee" finding.

• Can be accomplished quantitatively by computing the ratio of the SSE.  
When this ratio falls below some threshold, you accept the value of k (now 
this ratio is the hyperparameter).  

• We will see another technique for measuring cluster quality momentarily.
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K-Means Issues and Alternatives 
Handling Empty clusters: Random centroid creation could result in 
a cluster with no members.  Use alternate approach to select 
centroid fixes this issue.

Outliers: SSE is inflated and cluster become non-represenative as a 
result.  Common technique is to try and eliminate outliers before 
clustering.  
Postprocessing to Escape Local Minimum: Lloyd's method will almost certainly converge to a 
local minimum, thus, we can escape this assignment and explore others by modifying the 
cluster assignments through a cycle of:
• Add a cluster by:
• Split the cluster with the largest SSE OR 
• introduce a new centroid

• Disperse/remove the cluster that
• contributes the SSE the least OR
• merge two clusters (one idea is to choose the clusters with the two closest centroids).  



K-Means++ and Other Issues 
"Smart" initial centroid selection method proposed by David Arthur 
and Sergei Vallilvitsmii in 2007 (paper here).

1. Pick one of the data points as a centroid
2. Repeat k -1 times:

1. Weight points by their distance to their nearest centroid
2. Randomly select a point with respect to these weights

http://ilpubs.stanford.edu:8090/778/1/2006-13.pdf


K-Means Challenges

What clusters will k-means find when 
k=2?

Not so ideal.



Using Densities – Meet DBScan

A point is a core point if it has at least a 
specified number of points (MinPts) 
within eps(including itself)

Density – number of points within a 
radius (eps)

A border point is not a core point, but is 
the neighborhood of a core point.

A noise point is any point that is not a 
core or border point.



DBScan Works Well

Original Points Clustered Points



DBScan: Determining EPS and MinPts

• Idea is that for points in a cluster, their kth nearest neighbor are roughly the same 
distance 

• Noise points have the kth nearest neighbor further 
away 

• Plot sorted by distance of every point to its 
kth nearest neighbor show on right.  Notice 
that for many points, the distances are 
consistent.



Recall K-Mean's Performance

K-Means (k=2) DBScan (eps = 0.25, minPts = 5)



Determining Cluster Validity

What happen to accuracy, precision, recall?

Cluster is subjective, so, hard to quantify what "good" means

Evaluate cluster to:
• Avoid finding patterns in the noise
• Compare clustering algorithms
• Compare to sets of clusters



Clustering Challenges

If you ask for a clustering, the methods will oblige, no questions asked.

Random Noise K-Means (k = 3)

Visually, you can see this not a good clustering.  But how do we do this in high dimensions?  



Clustering Validity Via Correlation
Two matrices: proximity/similarity matrix and ideal similarity matrix

• One row/column for each data point (n x n)
• An entry is a 1 IF the associated pair belongs to the same cluster, other 0
• Compute the correlation between the 2 matrices

Correlation = 0.9235 Correlation = 0.581



Similarity Matrix for Validation
Two matrices: proximity matrix and ideal similarity matrix

Data sorted/ordered  by cluster label



Similarity Matrix for Validation
Two matrices: proximity matrix and ideal similarity matrix



Similarity Matrix for Validation
DBScan cluster quality visualized via a similarity matrix.



Internal Measures
• Cluster cohesion is how closely related objects are in a cluster (within cluster sum of 

squares, or WSS).  Cluster separation measures how distinct of well separated a 
cluster is from other clusters, the between cluster sum of squares (or BSS).

𝐶! is size of cluster k, m is the mean of all the data and 𝑚!is the mean of cluster k.  
NOTE: that the sum of SSE and BSS is a constant for a given set of data points n.  
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Cohesion Cluster Separation
Figures from Intro to Data Mining (Tan et al).



Silhouette Coefficient
• Relatively efficient (especially if you can store the distance matrix in memory)

Method:

For each datapoint i ∈ N:
1. For each data point, compute ai, which is its average distance to all other objects that are in 

the same cluster as ai(except point i itself)  𝑎 𝑖 = #
("
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2. For each data point, calculate the mean distance to all other clusters and take the minimum 
of these values.  Think of this as the mean distance to its closest neighboring cluster.  Call this 
value bi.  𝑏 𝑖 = min!.-
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3. Data point i's silhouette coefficient is s i = /""0"
123(0",/")

if 𝐶- > 1 otherwise s(i) = 0 (if 𝐶- = 1.

When judging the qualify of the overall clustering, the average of silhouette coefficients 
over all data points is used.


