CS 445 Introduction to Machine Learning

Convolution Neural Networks

Instructor: Dr. Kevin Molloy

Announcements

PA 3

- Due on November 13th at 5:00 pm
- Good goal to complete dense models by the end of the weekend

Review of Last Class

- Softmax and One-Hot Encoding (multiclass classification with ANN)
- Using Convolutions on Images
 - Filters/kernels enable the NN to learn the features that are important in the image for classifying
 - These kernels provide "position invariance" to the features (the pattern can be detected anywhere in the picture)

Learning Objectives

- Reducing the Number of Parameters
- Preventing Overfitting in NNs (and CNNs)
- Data Normalization
- Experimental Design for NNs

Strides and Padding

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

10	10	10	0	0	0	
10	10	10	0	0	0	
10	10	10	0	0	0	
10	10	10	0	0	0	
10	10	10	0	0	0	
10	10	10	0	0	0	

 Corners only appear once. Solution is to pad the image (see left)

Example of stride = 2

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

Recall (W - F + 2P/S) + 1

Basic CNN

4	3	3	:	2
255	42	125		211
123	98	111		48
54	192	185		6

a^[0]

100 x 100 x 1

4 filters Shape of W (3,3,4)

98 x 98 x 4

These are the activations for the next layer $(a^{[1]})$

Demo of convolution at https://cs231n.github.io/assets/conv-demo/index.html

MaxPooling

Pooling

Goal: Reduce number of parameters in the model

480 x 640 = 307,200

84 x 111 = 9,324

Think of it as down sampling an image.

Trend: Each layer shrinks the dimensions of the data/image but the number of filters increase

Image from towardsdatascience.com

Why Convolutions Work

connections

Translation Invariance: Maxpooling helps find the features wherever they reside in the input data.

Normalization

Do we need to normalize data for NNs?

Overfitting

Ideas on Preventing overfitting?

What about Ensemble learning?

Dropout layers

Dropout layers (Mode.add(Dropout(0.2))

Image Augmentation to Prevent Overfitting

Image Augmentation to Prevent Overfitting

from keras.preprocessing.image import ImageDataGenerator

train_gen = ImageDataGenerator(rotation_range=8,

width_shift_range=0.08, shear_range=0.3,

height_shift_range=0.08, zoom_range=0.08)

classifier.fit_generator(training_set,

steps_per_epoch=60000//64, epochs=5)

Hyperparameters

What are the hyper-parameters for CNNs?

Number of epochs?

Dropouts

Maxpooling and network size and shape