CS 445

Introduction to Machine Learning

Softmax and
 One-Hot Encoding

Instructor: Dr. Kevin Molloy

Announcements

PA 3 Posted

- Due a week from Friday at 5:00 pm

Learning Objectives

- Multiclass classification with NNs
- One hot encoding
- Monitoring Keras
- Sequential Networks and Image Recognition
- Utilize Convolution in NN (called CNNs)

Binary Classification
Input Hidden Layer Output Layer

Output of each layer goes through an activation function. This introduces a nonlinearity at each node.

Multiclass Classification

Logit - one per class. Each value tells us something about the target class. We would like to change these values to a probability distribution.

$$
\operatorname{Softmax}\left(a_{i}\right) \frac{\exp \left(a_{i}\right)}{\sum_{j} \exp \left(a_{j}\right)}
$$

Dealing with Categorical Data

- Problems like image (or digit) recognition have multiple categorical labels.
- Neural networks require all data (including the labels to be numeric).

How to Convert? In general, two steps are required

1. Convert labels to an integer encoding
2. One-hot encoding

Integer and One-hot encoding

Classifying dogs, cats, and hamsters.

- "Dog" can be 1
- "Cat" can be 2
- Hamster can be "3".

Is this enough?

Integer and One-hot encoding

Classifying dogs, cats, and hamsters.

- "Dog" can be 1
- "Cat" can be 2
- Hamster can be "3".

Is this enough? Turns out no. This encoding includes an ordinal relationship, which is not really applicable. One-hot encoding is the answer.

- Create a binary variable for each class, all variables are set to zero except for the actual class, which is set to 1 .

Keras Examples

```
y_train = np_utils.to_categorical(y_train, 3)# 3 class problem
model.add(Dense(3, activation='softmax')) # add softmax layer as last layer
tensorboard = TensorBoard(log_dir='./logs', histogram_freq=1,
    write_images=True)
history = model.fit(X_train, Y_train, epochs=10000, batch_size=1000,
verbose=1, callbacks=[tensorboard])
```


Images

$3024 \times 4032 \times 3=36,578,304$

A fully connected network with 1,000 hidden nodes in the first layer, W is a 36 million $\times 1000$ (36 billion entries)

Image Convolutions

Picture convolved with a "Canny edge detector".
How can we do this?

Detecting Vertical Edges

3	0	1	2				
1	5	8	9				
2	7	2	5				
0	1	3	1	$\quad * \quad$	1	0	-1
:---	:---	---:					
1	0	-1					
1	0	-1	$\quad=\quad$				
:---							

Gray-scaled image
Filter or Kernel

Detecting Vertical Edges

Gray-scaled image
Filter or Kernel

$$
3^{*} 1+1^{*} 1+2^{*} 1+0^{*} 0+5^{*} 0+7^{*} 0+1^{*}-1+8^{*}-1+2^{*}-1=-5
$$

Detecting Vertical Edges

3	0	1	2
1	5	8	9
2	7	2	5
0	1	3	1

Gray-scaled image
Filter or Kernel

$$
0 * 1+5^{*} 1+7^{*} 1+1^{*} 0+8^{*} 0+2 * 0+2^{*}-1+9^{*}-1+5^{*}-1=-4
$$

Detecting Vertical Edges

3	0	1	2				
1	5	8	9				
2	7	2	5				
0	1	3	1	\left\lvert\, $*$	1	0	-1
:---	:---	:---					
1	0	-1					
1	0	-1	$\quad=$	-5	-4		
:---:	:---:	\right.					

Gray-scaled image
Filter or Kernel

$$
1 * 1+2 * 1+0^{*} 1+5^{*} 0+7^{*} 0+1^{*} 0+8^{*}-1+2^{*}-1+3^{*}-1=-10
$$

Detecting Vertical Edges

3	0	1	2
1	5	8	9
2	7	2	5
0	1	3	1

* | 1 | 0 | -1 |
| :--- | :--- | :--- |
| 1 | 0 | -1 |
| 1 | 0 | -1 |$|=$| -5 | -4 |
| :--- | :--- |
| -10 | -2 |

Gray-scaled image
Filter or Kernel

$$
5^{*} 1+7^{*} 1+1^{*} 1+8^{*} 0+2^{*} 0+3^{*} 0+1^{*}-1+3^{*}-1+1^{*}-1=-2
$$

Detecting Vertical Edges

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

1	0	-1
1	0	-1
1	0	-1

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Other Filters

1	0	-1
1	0	-1
1	0	-1

Vertical Edges

1	1	1
0	0	0
-1	-1	-1

Horizontal Edges

1	2	1
0	0	0
-1	-2	-1

Sobel Filter

Novel Idea

1	0	-1
1	0	-1
1	0	-1

Vertical Edges

1	1	1
0	0	0
-1	-1	-1

Horizontal Edges

w_{1}	w_{2}	w_{3}
w_{4}	w_{5}	w_{6}
w_{7}	w_{8}	w_{9}

1	1	1
0	0	0
-1	-1	-1

Sobel Filter

How about learning a set of filters for edge/object characteristics?

Losing Some Data Along the Way

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

1	0	-1
1	0	-1
1	0	-1

$\times 3(\mathrm{fxf})$

0	30	30	0		
0	30	30	0		
0	30	30	0		
0	30	30	0	\quad	
:---:	\quad				
:---:	\quad				
:---:					

4×4
$6 \times 6(\mathrm{n} \times \mathrm{n})$

- Notice corners only appear in 1 convolution computation.
- If you piece together several layers, you keep consolidating the signal/information

