CS 445

Introduction to Machine Learning
Features and the KNN Classifier

Instructor: Dr. Kevin Molloy

Features

If it walks like a duck, and quacks like a duck, it probably is a duck.

Features describe the observation:

Decision Tree Architecture

Idea: Identify the feature and the value of the feature (split point) that divides the data into 2 groups that minimizes the weighted "impurity" of each group. Repeat this process on each leaf until happy.

Observation: The model splits the data one feature at a time.

Distance (dissimilarity) between observations

Define a method to measure the distance between two observations. This distance incorporates a set of the features into a single number (scalar).

Idea: Small distances between observations imply similar class labels.

Euclidean Distance and Nearest Point Classifier

1. Compute distance from new point p (the black diamond) and the training set.

Distance (dissimilarity) between observations

Define a method to measure the distance between two observations. This distance incorporates all the features at once.

Idea: Small distances between observations imply similar class labels.

Euclidean Distance and Nearest Point Classifier

1. Compute distance from new point p (the black diamond) and the training set.
2. Identify the nearest point and assign its label to point p

point	Dist to p	$\square \square$
1	2.45	$\mp \square \square \square$
2	1.30	- - \quad
3	0.99	- $\quad 00$
\ldots	...	\bullet
n	8.23	$\bullet \cdot$

Euclidean Distance and Nearest Point Classifier

Voronoi Diagram

(https://en.wikipedia.org/wiki/Voronoi diagram) Create regions such that for any point p in the same region, their closest data point (the dots) are the same.

Euclidean Distance and Nearest Point Classifier

Voronoi Diagram

 (https://en.wikipedia.org/wiki/Voronoi diagram) Create regions such that for any point p in the same region, their closest data point (the dots) are the same.

Outlier - an object different than most other objects of the same type

Euclidean Distance and K-Nearest Point Classifier

Idea: Increase the number of neighbors (k) and take a majority vote.

Algorithm

$k=$ number of nearest neighbors
$D=$ training examples and labels (x, y)
$z=$ point (vector of points) to classify

Compute $\operatorname{dist}\left(x_{i}, z\right)$ (distance between z and every training data point x_{i})
$\mathrm{D}_{\mathrm{z}}=$ set of k closest examples to $z\left(\mathrm{D}_{\mathrm{z}} \subseteq \mathrm{D}\right)$

$$
\mathrm{z}_{\text {predict }}=\underset{v}{\operatorname{argmin}} \sum_{\left(x_{i}, y_{i}\right) \in D_{z}} I\left(v==y_{i}\right)
$$

Decision Boundaries:

Boundaries are perpendicular (orthogonal) to the feature being split.

What do the KNN decision boundaries look like?

Will I go Outside to play Today?

Let's try and build a model and predict.

Feature	Values
Weather	Sunny, Rainy, Overcast
Temperature	Hot, Mild, Cold

The label/class will be to predict if the child will play outside (Yes/No).

Computing Distances

How to compute a distance between Sunny, Rainy, and Overcast?

Computing Distances

How to compute a distance between Sunny, Rainy, and Overcast?

Is Dist(Sunny, Cloudy) == Dist(Sunny, Rainy) ?

Computing Distances

How to compute a distance between Sunny, Rainy, and Overcast?

Is Dist(Sunny, Cloudy) == Dist(Sunny, Rainy) ?
Difference between ordinal and nominal datatypes (see IDD section 2.1.2)

Smallest Distance means Most Similar?

Who is the most similar person to this in the dataset (right)?

$$
\text { Age }=39 \quad \text { Salary }=75,750
$$

Age	Salary
23	56 K
35	75 K
55	76 K

Smallest Distance means Most Similar?

Who is the most similar person to this in the dataset (right)?

$$
\text { Age }=39 \quad \text { Salary }=75,750
$$

Age	Salary
23	56 K
35	75 K
55	76 K

Smallest Distance means Most Similar?

Who is the most similar person to this in the dataset (right)?

$$
p=(\text { Age }=39, \text { Salary }=75,750)
$$

Dataset

Age	Salary
23	56 K
35	75 K
55	76 K

However, the Euclidian distances say otherwise.

Age	Salary	Distance to point p
23	56 K	$\sqrt{(39-23)^{2}+(75750-56000)^{2}} \approx 19,750$
35	75 K	$\sqrt{(39-35)^{2}+(75750-75000)^{2}} \approx 750$
55	76 K	$\sqrt{(39-55)^{2}+(75750-76000)^{2}} \approx 251$

Normalization

Dataset

Idea: Make the range of all features the same. Start with age. Min value: 23, max value: 55

$$
x_{i, j}^{\prime}=\frac{x_{i, j}-\min \left(X_{i}\right)}{\max \left(X_{i}\right)-\min \left(X_{i}\right)}
$$

Age	Salary
23	56 K
35	75 K
55	76 K

Age	Salary	Dist (orig)	Age normalized	Salary Normalized	Dist (with normalized values)
23	56 K	19,750	$(23-23) /(55-23)=0$	$(56 \mathrm{k}-56 \mathrm{k}) /(76 \mathrm{k}-56 \mathrm{k})=0$	
35	75 K	750	$(35-23)(55-23)=0.375$	$(75 \mathrm{k}-56 \mathrm{k}) /(76 \mathrm{k}-56 \mathrm{k})=0.95$	
55	76 K	251	$(55-23) /(55-23)=1.0$	$(76 \mathrm{k}-56 \mathrm{k}) /(76 \mathrm{k}-56 \mathrm{k})=1$	

Normalization

Idea: Make the range of all features the same.
Start with age. Min value: 23, max value: 55

$$
x_{i, j}^{\prime}=\frac{x_{i, j}-\min \left(X_{i}\right)}{\max \left(X_{i}\right)-\min \left(X_{i}\right)}
$$

Age	Salary
23	56 K
35	75 K
55	76 K

Age	Salary	Dist (orig)	Age normalized	Salary Normalized	Dist (with normalized values)
23	56 K	19,750	$(23-23) /(55-23)=0$	$(56 k-56 k) /(76 k-56 k)=0$	1.1
35	75 K	750	$(35-23)(55-23)=0.375$	$(75 k-56 k) /(76 k-56 k)=0.95$	0.13
55	76 K	251	$(55-23) /(55-23)=1.0$	$(76 k-56 k) /(76 k-56 k)=1$	0.50

