Welcome to CS 445 Introduction to Machine Learning Model Evaluation, Selection, and Validation

Instructor: Dr. Kevin Molloy

Announcements

• Quiz 2 on Canvas due Wednesday by 11:59 pm

• PA 1 is due next Friday (Sept 18th).

 Video is posted (link in Canvas under modules, week 2) that discusses Decision Trees for regression. Watch and we will briefly discuss next class.

Learning Objectives for Today

- Define and discuss the differences between model evaluation and model selection
- Define the term hyper-parameter and make the distinction between it and a parameter
- Utilize training, validation, and test sets to design experiments to better characterize your model's performance
- Define and utilize k-fold cross validation

Plan for Today

- Complete Lab questions 1 and 2 (6 to 8 minutes)
- Discussion
- Complete Lab questions 3 to 7(skip question #8, it is repeated)
- Discussion
- Complete Lab questions 11
- Discussion
- General discussion
- Submit completed PDF to Canvas

Model Selection

The task of finding the model that maximizes the performance of **learning** task is called **model selection**. This involves tuning **hyper-parameters**

What are the hyper-parameters?

- Parameters NOT directly learned from the training data
- Set before the induction(learning) process begins

Plan for Today

- Complete Lab questions 1 and 2 (6 to 8 minutes)
- Discussion

Model Selection

Goal is to minimize generalization error.

Separate data into two groups: training and test. For each hyper-parameter setting:

- Build the model using the training set
- Evaluate the model using the test set

Next Steps

- Complete Lab questions 3 9 (15 minutes)
- Discussion

Dataset Purposes

- Goal is to minimize **generalization error**. However, we are using the test set for two purposes:
- Model selection (best hyper-parameters)
- Model evaluation (how well does it generalize)

We are now potentially **overfitting** the hyper-parameters by tuning them too much. Let's look at a new approach.

- **Training set** is used to fit the model.
- Validation set is used to evaluate hyper-parameter selection.
- Test set is used ONLY for final model evaluation.

Cross Validation

For small datasets, breaking the data up into all these groups is not idea.

Run 1	D.tr	D.tr	D.val
Run 2	D.tr	D.val	D.tr
Run 3	D.val	D.tr	D.tr

Idea: Divide training set into k groups (3 shown here) and perform k evaluations (where the validation set changes each time). Take the **average** of the k runs as the performance measure for the hyper-parameters being evaluated.

Next Steps

- Complete Lab questions 10 12 (15 minutes)
- Discussion

For Next time

Homework:

- Complete lab and submit to Canvas by Wed at 11:59 PM.
- Reading quiz on Canvas (due Wed at 11:59 pm)
- Work on PA 1

Reading: IDD Sections 3.4 – 3.8