Welcome to CS 445 Introduction to Machine Learning

Feature Characterization and SkLearn's Trees

Instructor: Dr. Kevin Molloy

Announcements

• Quiz 1 on Canvas was due yesterday at 11:59 pm

• PA 0 is due this coming Monday.

• Continue to work on PA 1.

Learning Objectives From Earlier

- Define and give an example of nominal and ordinal categorical features
- Define and give an example of interval and ratio numeric features.
- Utilize a decision tree to predict class labels for new data.
- Define and compute **entropy** and utilize it to characterize the impurity of a set
- Define an algorithm to determine split points that can be used to construct a decision tree classifier.

Muddiest Points

- Purpose of determining categorical (nominal, ordinal) and numeric (interval/ratio).
- Video posted (see Canvas's module section for this class):
 - Clarifies computing entropy for the parent node of the tree
 - Splits on continuous data
 - Definition and need for an impurity measure/formula

Learning Objectives for Today

- Utilize NumPy and Seaborn to visual and interpret the distribution of values for individual features in plot and whisker-plot format
- Utilize Scikit-Learn's DecisionTree and for classification and regression.
- Utilize accuracy, error rate, sum of squared errors (SSE) and mean squared error (MSE) to characterize model performance.

Lab on Data Investigation and SkLearn Decision Trees

Lab Today will use Jupyter Notebooks.

Download the lab for today's class from the class website and save it on your desktop. After completion, you will submit this notebook to Canvas.

Plan for Today

- Complete Lab Activities 1 2 (groups of 2 to 3 people)
- Discussion
- Complete Lab Activities 4
- Discussion
- Complete Lab Activity 5
- Discussion
- Complete Lab Activity 6 and 7
- Submit completed PDF to Canvas

Plan for Today

- Complete Lab Activities 1 3 (groups of 2 to 3 people)
- Discussion

- Complete Lab Activities 4
- Discussion

- Complete Lab Activity 5
- Discussion
- Complete Lab Activity 6 and 7
- Submit completed PDF to Canvas

Being able to visualize the separation of the classes with respect to a feature's distribution provides valuable insight.

What would be a good split point for this feature? Would it work well?

Class	count	mean	std	min	25%	50%	75%	max
class_0	59	13.7	0.46	12.9	13.4	13.75	14.1	14.83
class_1	71	12.28	0.54	11.0	11.9	12.3	12.5	13.9
class_2	48	13.2	0.5	12.2	12.8	13.2	13.5	14.3

Class	count	mean	std	min	25%	50%	75%	max
class_0	59	13.7	0.46	12.9	13.4	13.75	14.1	14.83
class_1	71	12.28	0.54	11.0	11.9	12.3	12.5	13.9
class_2	48	13.2	0.5	12.2	12.8	13.2	13.5	14.3

Class	count	mean	std	min	25%	50%	75%	max
0	59	13.7	0.46	12.9	13.4	13.8	14.1	14.8
1	71	12.3	0.54	11.0	11.9	12.3	12.5	13.9
2	48	13.2	0.5	12.2	12.8	13.2	13.5	14.3

Is the Mean Meaningful?

Class	count	mean	std	min	25%	50%	75%	max
0	59	13.7	0.46	12.9	13.4	13.8	14.1	14.8
1	71	12.3	0.54	11.0	11.9	12.3	12.5	13.9
2	48	13.2	0.5	12.2	12.8	13.2	13.5	14.3

Plan for Today

- Complete Lab Activities 1 3 (groups of 2 to 3 people)
- Discussion

- Complete Lab Activities 4
- Discussion

- Complete Lab Activity 5
- Discussion
- Complete Lab Activity 6 and 7
- Submit completed PDF to Canvas

Building a Decision Tree

1. classifier = \setminus

tree.DecisionTreeClassifier(criterion='entropy', max_depth=1)

2. classifier.fit(wine_data['data'], wine_data['target'])

Predicting with the Tree

What accuracy did you get back from the tree for the training data?

Plan for Today

- Complete Lab Activities 1 3 (groups of 2 to 3 people)
- Discussion
- Complete Lab Activities 4
- Discussion

- Complete Lab Activity 5
- Discussion
- Complete Lab Activity 6 and 7
- Submit completed PDF to Canvas

Classification tree:

- Splits reduce entropy (best info gain)
- Prediction is the majority class in the leaf

Classification tree:

- Splits reduce entropy (best info gain)
- Prediction is the majority class in the leaf

Modifications (from a classification tree):

- MSE measures the "quality" of a potential split
- SSE = $\sum_{i=0}^{n-1} (y_i f(x_i))^2$
- MSE = $\frac{1}{n}$ SSE
- Prediction is the average of the examples in a leaf

Quantifying Tree Performance

Classification

- Accuracy
- Error Rate
- Confusion Matrices

Regression:

• SSE =
$$\sum_{i=0}^{n-1} (y_i - f(x_i))^2$$

• MSE = $\frac{1}{n}$ SSE

$$RM <= 6.941 \\mse = 84.42 \\samples = 506 \\value = 22.533$$
$$\swarrow$$

$$mse = 40.273 \\mse = 40.273 \\mse = 79.729 \\samples = 430 \\samples = 76 \\value = 19.934 \\value = 37.238$$

Boston Housing Dataset

- 14 attributes
- 506 datapoints

Objective: To predict the price of a home.

This is not a discrete set, but rather a value.

This makes this a **regression** problem.

Tree with 2 leaves (stump) MSE: 46.2 on training data Tree with 441 leaves MSE: 4.4 on training data

For Next time

Homework:

- Complete lab and submit to Canvas by Fri at 9 PM.
- Complete PA 0 and submit to Autolab by 11:59 PM Monday
- Work on PA 1

Reading: IDD Sections 2.1 and 3.3

Next Class: Lab on Model Selection and Validation