Welcome to CS 445 Introduction to Machine Learning

Instructor: Dr. Kevin Molloy

Announcements

- Workstation Configuration should be complete
- We will be using Jupyter notebooks on Thursday for class
- PA 0 is due in 1 week to Autolab (multiple submissions allowed).
- Canvas Quiz 1 will be due at 11:59 PM tomorrow (Wednesday).
- PA 1 is posted.

Learning Objectives for Today

- Define and give an example of nominal and ordinal categorical features
- Define and give an example of interval and ratio numeric features.
- Utilize a decision tree to predict class labels for new data.
- Define and compute **entropy** and utilize it to characterize the impurity of a set
- Define an algorithm to determine split points that can be used to construct a decision tree classifier.

Plan for Today

- Complete Lab Activities 1 3 (groups of 2 to 3 people)
- Discussion
- Complete Lab Activities 4
- Discussion
- Complete Lab Activity 5
- Discussion
- Complete Lab Activity 6 and 7
- Submit completed PDF to Canvas

Supervised Learning

Supervised learning learns a function that maps an input example to an output. This function/model is inferred from data points with known outcomes (training data).

Test Set

Types of Data (IDD 2.1)

	Attribute Type	Description	Examples	Operations
gorical litative	Nominal	Nominal attribute values only distinguish. (=, ≠)	zip codes, employee ID numbers, eye color, sex: { <i>male,</i> <i>female</i> }	mode, entropy, contingency correlation, χ2 test
Cate Qua	Ordinal	Ordinal attribute values also order objects. (<, >)	hardness of minerals, { <i>good, better, best</i> }, grades, street numbers	median, percentiles, rank correlation, run tests, sign tests
meric ntitative	Interval	For interval attributes, differences between values are meaningful. (+, -)	calendar dates, temperature in Celsius or Fahrenheit	mean, standard deviation, Pearson's correlation, <i>t</i> and <i>F</i> tests
Nun Quan	Ratio	For ratio variables, both differences and ratios are meaningful. (*, /)	temperature in Kelvin, monetary quantities, counts, age, mass, length, current	geometric mean, harmonic mean, percent variation

From S. S. Stevents

What type of contact lens a person may wear?

hard

not young

none

From Bhi ksha Raj, Carnegie Mellon University

Predicting an Outcome given the Tree

Homeowner	Marital Status	Income	Class (Loan will default?)
No	Married	80,000	??

Node Impurity

Entropy formula
$$-\sum_{c=0}^{c-1} (p_i(t) \log_2(p_i(t)))$$

Recall that:
$$\log_2 x = \frac{\log_{10} x}{\log_{10} 2}$$

And in python math.log(x,2) or np.log2(x)

Question: Given 13 positive examples and 20 negative examples. What is the entropy?

Decision Tree Algorithm

```
1. if stopping conf(E, F) == true
2.
       leaf = CreateNode()
3. leaf.label = FindMajorityClass(E)
4.
       return leaf
5. else
6.
        root = CreateNode()
7.
        root.test cond = find best split(E, F)
8.
        E_{left} = E_{right} = \{\}
9
        for each \in \in E:
10.
             if root.test cond would split e left:
11.
                 E_{left} = E_{left} U e
12.
             else
13.
                 E_{right} = E_{right} U e
14.
         root.left = TreeGrowth(Eleft, F)
15.
         root.right = TreeGrowth(Eright, F)
16.
         return root
```

E is the set of training examples (including their labels).

F is the attribute set (metadata) to describe the features/attributes of E.

Decision Tree Algorithm (Binary Splits Only)

```
1. if stopping conf(E, F) == true
2.
        leaf = CreateNode()
3.
        leaf.label = FindMajorityClass(E)
4.
        return leaf
5. else
6.
        root = CreateNode
7.
        root.test cond find best split(E, F)
8.
        E_{left} = E_{right} = \{\}
9
        for each e \in E:
10.
             if root.test cond would split e left:
11.
                 E_{left} = E_{left} U e
12.
             else
13.
                 E_{right} = E_{right} U e
14.
         root.left = TreeGrowth(Eleft, F)
15.
         root.right = TreeGrowth(Eright, F)
16.
         return root
```

E is the set of training examples (including their labels).

F is the attribute set (metadata) to describe the features/attributes of E.

How to Select a Split?

root.test cond = find_best_split(E, F)

Goal: Select a feature to split and a split point that divides the data into two groups (left branch and right branch) that, when perform recursively, will result in the minimal impurity in the leaf nodes.

Naïve Solution: Attempt every possible decision tree that can be constructed.

Problem: The search space of possible trees is exponential in the size of the number of features and the number of splits within each feature. Thus, it is computationally intractable to evaluate all trees. This problem is known to be **NP-Complete**.

A Greedy Approximation

root.test_cond = **find_best_split**(E, F)

Approximation: At each node, select the feature and split within that feature that provides the largest information gain. This is a **greedy approximation algorithm**, since it picks the best option at a given time (greedy).

Info Gain = *Entropy*(*Parent*) - $\sum_{v \in (Left, right)} \frac{N(v)}{N} Entropy(v)$

where N(v) is the number of instances assign to node v (left or right subnode) and N is the total number of instances in the parent node.

(See IDD section 3.3.3 Splitting on Qualitative attributes).

Home Owner	Martial Status	Annual Income	Defaulted Borrower
Yes	Single	120,000	No
No	Married	100,000	No
Yes	Single	70,000	No
No	Single	150,000	Yes
Yes	Divorced	85,000	No
No	Married	80,000	Yes
No	Single	75,000	Yes

Consider Martial Status (3 possible splits):

Entropy(parent) =

 $-(3/7 * \log 2(3/7) + 4/7 * \log 2(4/7) \approx 0.99$

Home Owner	Martial Status	Annual Income	Defaulted Borrower
Yes	Single	120,000	No
No	Married	100,000	No
Yes	Single	70,000	No
No	Single	150,000	Yes
Yes	Divorced	85,000	No
No	Married	80,000	Yes
No	Single	75,000	Yes

Consider Martial Status (3 possible splits):

Entropy(parent) =

 $-(4/7 \log_2(4/7) + 3/7 \log_2(3/7) \approx 0.99$

1 of 3 possible splits:

- (single) to the left
- (married/divorced) right

Home Owner	Martial Status	Annual Income	Defaulted Borrower
Yes	Single	120,000	No
No	Married	100,000	No
Yes	Single	70,000	No
No	Single	150,000	Yes
Yes	Divorced	85,000	No
No	Married	80,000	Yes
No	Single	75,000	Yes

Consider Martial Status (3 possible splits):

Entropy(parent) =

 $-(4/7 \log_2(4/7) + 3/7 \log_2(3/7) \approx 0.99$

1 of 3 possible splits:

• (single) to the left

(married/divorced) right

Left = $\frac{4}{7} * -(\frac{2}{4}\log_2 \frac{2}{4} + \frac{2}{4}\log_2 \frac{2}{4})$

Home Owner	Martial Status	Annual Income	Defaulted Borrower
Yes	Single	120,000	No
No	Married	100,000	No
Yes	Single	70,000	No
No	Single	150,000	Yes
Yes	Divorced	85,000	No
No	Married	80,000	Yes
No	Single	75,000	Yes

Consider Martial Status (3 possible splits):

Entropy(parent) =

 $-(4/7 \log 2(4/7) + 3/7 \log 2(3/7) \approx 0.99$

1 of 3 possible splits:

• (single) to the left

(married/divorced) right

Left =
$$\frac{4}{7} * -1 * \left(\frac{2}{4}\log_2 \frac{2}{4} + \frac{2}{4}\log_2 \frac{2}{4}\right)$$

Right = $\frac{3}{7} * -1 * \left(\frac{2}{3}\log_2 \frac{2}{3} + \frac{1}{3}\log_2 \frac{1}{3}\right)$

Home Owner	Martial Status	Annual Income	Defaulted Borrower	
Yes	Single	120,000	No	
No	Married	100,000	No	
Yes	Single	70,000	No	
No	Single	150,000	Yes	
Yes	Divorced	85,000	No	
No	Married	80,000	Yes	
No	Single	75,000	Yes	

Consider Martial Status (3 possible splits):

Entropy(parent) =

 $-(4/7 \log 2(4/7) + 3/7 \log 2(3/7) \approx 0.99$

1 of 3 possible splits:

• (single) to the left

(married/divorced) right

Left =
$$\frac{4}{7} * -1 * (\frac{2}{4}\log_2 \frac{2}{4} + \frac{2}{4}\log_2 \frac{2}{4})$$

Right = $\frac{3}{7} * -1 * (\frac{2}{3}\log_2 \frac{2}{3} + \frac{1}{3}\log_2 \frac{1}{3})$

Info Gain = $Entropy(Parent) - \sum_{v \in (Left, right)} \frac{N(v)}{N} Entropy(v)$

Info Gain = 0.99 - (.57 + .39) = 0.03

Information Gain: Continuous Attributes

Home Owner	Martial Status	Annual Income	Defaulted Borrower	
Yes	Single	120,000	No	
No	Married	100,000	No	
Yes	Single	70,000	No	
No	Single	150,000	Yes	
Yes	Divorced	85,000	No	
No	Married	80,000	Yes	
No	Single	75,000	Yes	

For annual income, where to split?

- Sort the feature and make the midpoint between adjacent values the candidate split point.
 - Compute the info gain for each of these splits.

Bounds on Split Points for a Single Feature

Discussion

For Next time

Homework:

- Work on PA 0
- Complete Lab/PDF and submit to Canvas by Wed at 9 PM.

Reading: IDD Sections 2.1 and 3.3

Canvas Quiz Short Reading Quiz (due at 11:59 pm on Wednesday)

Lab for next class will use **Jupyter Notebooks.** Make sure you can download the lab from the class website and start the notebook on your computer (the Resources area on the website has instructions on starting the notebook).