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Probabilistic Models

2

• Models describe how (a portion of) the world works

• Models are always simplifications
• May not account for every variable
• May not account for all interactions between variables
• “All models are wrong; but some are useful.”

– George E. P. Box

• What do we do with probabilistic models?
• We (or our agents) need to reason about unknown variables, 

given evidence
• Example: explanation (diagnostic reasoning)
• Example: prediction (causal reasoning)
• Example: value of information



Bayesian Networks
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A simple, graphical notation for conditional independence assertions and hence for 
compact specification of full joint distribution

Syntax:
• A set of nodes, one per variable
• A directed, acyclic graph (link is approximately "directly influences")
• a conditional distribution for each node given its parents P(Xi | Parents(Xi)). 

In the simplest case, conditional distribution represented as a conditional probability 
table (CPT) giving the distribution over Xi for each combination of parents values.



Example of a Bayesian Network
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Topology of network encodes conditional independence assertions:

• P(Toothache, Cavity, Catch)

• If I have a cavity, the probability that the probe catches in it 
doesn't depend on whether I have a toothache:
• P(+catch | +toothache, +cavity) = P(+catch | +cavity)

• The same independence holds if I donʼt have a cavity:
• P(+catch | +toothache, -cavity) = P(+catch| -cavity)

• Catch is conditionally independent of Toothache given Cavity:
• P(Catch | Toothache, Cavity) = P(Catch | Cavity)



Conditional Independence
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• Unconditional (absolute) independence very rare (why?)

• Conditional independence is our most basic and robust form of 
knowledge about uncertain environments.

• X is conditionally independent of Y given Z

if and only if:

or, equivalently, if and only if



Short Quiz: Conditional Independence
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• What about this domain:

• Traffic
• Umbrella
• Raining



Short Quiz: Conditional Independence
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• What about this domain:

• Fire
• Smoke
• Alarm



Conditional Ind. And the Chain Rule
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• Chain rule: 

• Trivial decomposition:

• With assumption of conditional independence:

• Bayesʼnets / graphical models help us express conditional independence assumptions



Ghostbusters Chain Rule
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§ Each sensor depends only
on where the ghost is

§ That means, the two sensors are 
conditionally independent, given the 
ghost position

§ T: Top square is red
B: Bottom square is red
G: Ghost is in the top

§ Givens:
P( +g ) = 0.5
P( -g ) = 0.5
P( +t  | +g ) = 0.8
P( +t  | -g ) = 0.4
P( +b | +g ) = 0.4
P( +b |  -g ) = 0.8

P(T,B,G) = P(G) P(T|G) P(B|G)



Big Picture of Bayes' Nets
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• Two problems with using full joint distribution tables 
as our probabilistic models:
• Unless there are only a few variables, the joint is WAY too 

big to represent explicitly
• Hard to learn (estimate) anything empirically about more 

than a few variables at a time

• Bayesʼ nets: a technique for describing complex joint 
distributions (models) using simple, local distributions 
(conditional probabilities)
• More properly called graphical models
• We describe how variables locally interact
• Local interactions chain together to give global, indirect 

interactions
• For about 10 min, weʼll be vague about how these 

interactions are specified



Example Car Diagnosis
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Initial evidence: car won't start
Testable variables (Green), "Broken, so fix it" variables are orange
Hidden variables (gray) ensure sparse structure, reduce parameters



Example: Car Insurance
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Global Semantics
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Global semantics defines the full joint 
distribution as the product of the local 
conditional distributions.

𝑃(𝑥!, … , 𝑥") = (
#$!

"

𝑃 𝑥# 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 (𝑋#))

Quiz: Compute P(j ∧ m ∧ a ∧ ¬b ∧ ¬e)

= P(j |a )P(M | a) P (a | ¬b, ¬e)P(¬b) P(¬e)

= 0.9 x 0.7 x 0.001 x 0.999 x .998
≈ 0.00063



Local Semantics
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Local semantics: each node is conditionally 
independent of its nondescenants given its 
parents

Theorem: Local semantics ⇔ global semantics 



Example: Coin Flips

15

• N independent coin flips

• No interactions between variables: absolute independence

X1 X2 Xn



Example: Traffic
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• Variables:
• R: It rains
• T: There is traffic

• Model 1: independence

• Why is an agent using model 2 better?

R

T

R

T



Example of a Bayesian Network
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I'm at work, neighbor John calls to say my burglar alarm is ringing, but my neighbor Mary 
doesn't call.  Sometimes the alarm is set off by earthquakes.  Is there a burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects "causal" knowledge:
• A burglar can set off the alarm
• An earthquake can set the alarm off
• The alarm can cause Mary to call
• The alarm can cause John to Call.  



Example Bayesian Network
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Compactness
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A CPT for Boolean Xi with k Boolean parents.  

Has:
2k rows for the combinations of parent values
Each row requires on number p for Xi = true
(the number for Xi = false is simply 1 – p)

If each variable has no more than k parents, the complete network requires O(n · 2k) numbers

i.e. grows linearly with n, vs O(2n) for the full joint distribution.

For the burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 25 – 1 = 31).  



In-Class Problem

20

We have a bag of 3 biased coins: a, b, c with probabilities of coming up 
heads of 20%, 60%, and 80% respectively.  One coin is drawn randomly from 
the bag (with equal likelihood od drawing each of the 3 coins), and then the 
coin is flipped 3 times to generate the outcomes X1, X2, and X3.

1. Draw the Bayesian network corresponding to this setup and define the 
necessary CPTs.

2. Calculate which coin was most likely to have been drawn from the bag if 
the observed flips come out heads twice and tails once.


