

Artificial Intelligence

First Order Logic (part 1)
CS 444 - Spring 2021
Dr. Kevin Molloy
Department of Computer Science

Example Knowledge Base

The law says that it is a crime for an American to sell weapons to hostile nations. The country, Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is an American.

Prove that Col. West is a criminal.

Represent this problem in FOL and show a prove that Col. West is a criminal.

Example Knowledge Base

The law says that it is a crime for an American to sell weapons to hostile nations. The country, Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is an American.
... it is a crime for an American to sell weapons to hostile nations:
American $(x) \wedge$ Weapon $(y) \wedge \operatorname{Sells}(x, y, z) \wedge \operatorname{Hostile}(z) \Longrightarrow \operatorname{Criminal}(x)$
Nono .. Has some missiles
$\exists x$ Owns(Nono, x) \wedge Missile (x):
Owns(Nono, M_{1}) and $\operatorname{Missle}\left(\mathrm{M}_{1}\right)$
.. All of its missiles were sold to it by Col. West:
$\forall x$ Owns(Nono, $x) \wedge$ Missile $(x) \Longrightarrow$ Sells(West, x, Nono)
Missiles are weapons:
$\forall x$ Missile (x) \Rightarrow Weapon (x)
An enemy of America counts as hostile: $\forall x \operatorname{Enemy}(x$, America) \Rightarrow Hostile (x)

Example Knowledge Base

The law says that it is a crime for an American to sell weapons to hostile nations. The country, Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is an American.
... it is a crime for an American to sell weapons to hostile nations:
American $(x) \wedge$ Weapon $(y) \wedge \operatorname{Sells}(x, y, z) \wedge \operatorname{Hostile}(z) \Longrightarrow \operatorname{Criminal}(x)$
Nono .. Has some missiles
$\exists x$ Owns(Nono, x) \wedge Missile (x):
. All of its missiles were sold to it by Col. West:

$$
\forall x \text { Owns }(\text { Nono, } x) \wedge \text { Missile }(x) \Longrightarrow \text { Sells(West, } x, \text { Nono) }
$$

Missiles are weapons: $\quad \forall x$ Missile $(x) \Longrightarrow$ Weapon (x)
An enemy of America counts as hostile: $\forall x$ Enemy (x, America) \Rightarrow Hostile (x)
West, who is an American..
The country Nono, an enemy of America
\rightarrow American(West)
\rightarrow Enemy(Nono, America)

Forward Chaining Example

```
American(West)
```

Missile(M1)
Owns(Nono,M1)
Enemy(Nono,America)

Forward Chaining Example

$$
\forall x \text { Owns }(\text { Nono, } x) \wedge \text { Missile }(x) \Longrightarrow \text { Sells(West, } x, \text { Nono })
$$

$\forall x$ Missile (x) \Rightarrow Weapon (x)

An enemy of America counts as hostile: $\forall x$ Enemy (x, America) \Longrightarrow Hostile(x)

Forward Chaining Example

American $(x) \wedge$ Weapon $(y) \wedge \operatorname{Sells}(x, y, z) \wedge$ Hostile $(z) \Longrightarrow$ Criminal($x)$

Forward Chaining Algorithm

Operates the same as with propositional logic. Combines sentences
until it reaches a fixed point. When KB is written with definite clauses, and does not contain functional symbols, it is complete. It is bound by $O\left(\mathrm{pn}^{k}\right)$ where k is the maximum arity of all predicate functions, n is the number of constant symbols, and p is the number of predicates.

Is it complete for knowledge bases with functional symbols?

The short answer is yes, but logically complete means that if the statement is true, we can proof that in a finite amount of time.
Because functions can be applied recursively, (recall $S(S(S(n))$) for example. So, it is not possible to decide whether the knowledge base entails some fact (when it doesn't, we would loop forever). When it does, you can imagine a routine like IDS (iterative deepening search), where the level of recursion is controlled. We call this semi-decidable.

Backward Chaining Examples

Criminal(West)

Backward Chaining Examples

Backward Chaining Examples

Similar Problems

Backward Chaining Examples

Backward Chaining Examples

Backward-Chaining

Depth-first recursive proof search: space is linear in size of proof (good)

But, incomplete because of infinite loops (can be fixed) as we will see soon.

Similar Problems

$\operatorname{Diff}(w a, n t) \wedge \operatorname{Diff}(w a, s a) \wedge \operatorname{Diff}(n t, q) \wedge$ $\operatorname{Diff}(n t$, sa) $\wedge \operatorname{Diff}(q, n s w) \wedge \operatorname{Diff}(q$, sa) \wedge $\operatorname{Diff}(n s w, ~ v) \wedge \operatorname{Diff}(n s w$, sa) $\wedge \operatorname{Diff}(v$, sa)
\Rightarrow Colorable()

Colorable() is inferred iff the CSP has a solution. CSPs include 3SAT as a special case, hence, matching is NP-Hard.

Resolution - Removing UI (\forall)

We need to convert our sentences to CNF (just like propositional logic).
How do we deal with universal instantiation:
$\forall x$ American $(x) \wedge$ Weapon $(y) \wedge$ Sell $(x, y, z) \wedge$ Hostile (z) $\Rightarrow \operatorname{Criminal}(x)$

Since we know how to do unification with variables, we can simply drop the UI terms. American $(x) \wedge$ Weapon $(y) \wedge \operatorname{Sell}(x, y, z) \wedge$ Hostile $(z) \Longrightarrow$ Criminal($x)$
Convert to CNF:
$\neg($ American $(x) \wedge$ Weapon $(y) \wedge$ Sell $(x, y, z) \wedge$ Hostile $(z)) \vee$ Criminal (x)
\neg American $(x) \vee \neg$ Weapon $(y) \vee \neg$ Sell $(x, y, z) \vee \neg$ Hostile (z) \vee Criminal (x)
And then use Unification to put in constants from the KB.
\neg American(West) $\vee \neg$ Weapon $(\mathrm{y}) \vee \neg$ Sell(West, $\mathrm{y}, \mathrm{z}) \vee \neg$ Hostile (z) \vee Criminal(West) $\quad\{\mathrm{x} /$ West $\}$

Resolution -- Removing Existential Instantation

We need to convert our sentences to CNF (just like propositional logic).
How do we deal with universal instantiation:
$\exists x$ Crown(x) \wedge OnHead(x, John)
We know that some object exists that is the crown that is on John's head.
Thus, we can create a new constant, k, as long as k does not appear anywhere else in the knowledge base. Thus, we can get:

$$
\text { Crown }\left(\mathrm{C}_{1}\right) \wedge \text { OnHead }\left(\mathrm{C}_{1}, \text { John }\right)
$$

This process is called Skolemization (and the C_{1} is a skolem constant).
Example: Nono .. Has some missiles
$\exists x$ Owns(Nono, x) ^Missile (x):
Owns(Nono, M_{1}) and Missle(M_{1})

Example of Resolution

```
\(\neg \operatorname{American}(x) \vee \neg\) Weapon \((y) \vee \neg \operatorname{Sells}(x, y, z) \quad \vee \neg \operatorname{Hostile}(z) \vee \operatorname{Criminal}(x)\)
```

\neg Criminal(West)

Example of Resolution Using a Table

Original	CNF
$\forall x$ American (x) \wedge Weapon $(\mathrm{y}) \wedge \operatorname{Sells}(x, y, z) \wedge$ Hostile $(z) \Longrightarrow$ Criminal (x)	$\neg($ American $(x) \wedge$ Weapon $(y) \wedge$ Sells $(x, y, z) \wedge$ Hostile $(z)) \vee$ Criminal (x) (drop universal instantiation and perform implication elimination)
	\neg American (x) $\vee \neg$ Weapon $(y) \vee \neg$ Sells $(x, y, z) \vee \neg$ Hostile $(z) \vee C$ Criminal (x) (deMorgans)
$\exists x$ Owns(Nono, x) ^ Missile (x)	Owns(Nono, $\left.\mathrm{M}_{1}\right) \wedge \operatorname{Missle}\left(\mathrm{M}_{1}\right)$ (existential elimination via skolem constant)
	Owns(Nono, M_{1}) (and-elimination for the next 2 lines)
	Missle(M_{1})
$\forall x$ Owns(Nono, x) \wedge Missile (x$) \Longrightarrow$ Sells(West, x, Nono)	$\neg($ Owns(Nono, $x) \wedge$ Missile (x)) \vee Sells(West, x, Nono) (drop universal instantiation and perform implication elimination)
	\neg Owns(Nono, x) $\vee \neg$ (Missile (x) V Sells(West, x, Nono) (deMorgans)
$\forall x$ Missile (x) \Rightarrow Weapon(x)	\neg Missile (x) V Weapon(x) (drop universal instantiation and perform implication elimination)
$\forall x$ Enemy $(x$, America) \Rightarrow Hostile(x)	\neg (Enemy (x, America) V Hostile (x) (drop universal instantiation and perform implication elimination)
American(West)	American(West)
Enemy(Nono, America)	Enemy(Nono, America)
Prove Criminal(West), so $\alpha=$ Criminal(West)	-Criminal(West)

Example of Resolution using a Table

Line \#	Clause	Lines and rule
1	\neg American (x) $\vee \neg$ Weapon(y) $\vee \neg$ Sells $(\mathrm{x}, \mathrm{y}, \mathrm{z}) \vee \neg$ Hostile(z) \vee Criminal (x)	Given
2	Missle(M_{1})	
3	Owns(Nono, M_{1})	
4	\neg Owns(Nono, x) $\vee \neg$ Missile (x$) \vee$ Sells (West, x , Nono)	
5	\checkmark Missile (x) \vee Weapon $(\mathrm{x}$)	
6	\rightarrow Enemy(x, America) V Hostile (x)	
7	American(West)	
8	Enemy(Nono, America)	
9	-Criminal(West)	$\rightarrow \alpha$
10	\neg American (West) $\vee \neg$ Weapon(y) $\vee \neg$ Sells (West, $\mathrm{y}, \mathrm{z}) \vee \neg$ Hostile(z)	1/9 \{x/West $\}$
11	Hostile(Nono)	6/8 \{x/Nono $\}$

Example of Resolution using a Table

Line \#	Clause	Lines and rule
1	\neg American (x) $\vee \neg$ Weapon(y) $\vee \neg$ Sells $(x, y, z) \vee \neg$ Hostile (z) \vee Criminal (x)	Given
2	Missle(M_{1})	
3	Owns(Nono, M_{1})	
4	\neg Owns(Nono, x) $\vee \neg$ Missile (x) \vee Sells(West, x , Nono)	
5	\rightarrow Missile (x) \vee Weapon(x)	
6	\neg Enemy(x , America) \vee Hostile (x)	
7	American(West)	
8	Enemy(Nono, America)	
9	-Criminal(West)	- α
10	\neg American (West) $\vee \neg$ Weapon(y) $\vee \neg$ Sells (West, $\mathrm{y}, \mathrm{z}) \vee \neg$ Hostile(z)	1/9 \{x/West $\}$
11	Hostile(Nono)	6/8 \{x/Nono \}
12	\neg American (West) $\vee \neg$ Weapon(y) $\vee \neg$ Sells(West, y , Nono)	10/11 \{z/Nono\}

Example of Resolution using a Table

Line \#	Clause	Lines and rule
1	\neg American (x) $\vee \neg$ Weapon(y$) \vee \neg$ Sells $(x, y, z) \vee \neg$ Hostile (z) \vee Criminal (x)	Given
2	Missle(M_{1})	
3	Owns(Nono, M_{1})	
4	\neg Owns(Nono, x) $\vee \neg$ Missile (x$) \vee \mathrm{Sells}$ (West, x , Nono)	
5	\checkmark Missile (x) \vee Weapon (x)	
6	\rightarrow Enemy (x , America) V Hostile (x)	
7	American(West)	
8	Enemy(Nono, America)	
9	-Criminal(West)	$-\alpha$
10	\neg American (West) $\vee \neg$ Weapon(y) $\vee \neg$ Sells (West, $\mathrm{y}, \mathrm{z}) \vee \neg$ Hostile(z)	1/9 \{x/West $\}$
11	Hostile(Nono)	6/8 \{x/Nono \}
12	\neg American (West) $\vee \neg$ Weapon(y) $\vee \neg$ Sells(West, y , Nono)	10/11 \{z/Nono\}
13	\rightarrow Weapon(y) V -Sells(West, y, Nono)	7/12

Example of Resolution using a Table

Line \#	Clause	Lines and rule
1	\neg American (x) $\vee \neg$ Weapon(y$) \vee \neg$ Sells $(x, y, z) \vee \neg$ Hostile (z) \vee Criminal (x)	Given
2	Missle(M_{1})	
3	Owns(Nono, M_{1})	
4	\neg Owns(Nono, x) $\vee \neg$ Missile (x) \vee Sells(West, x , Nono)	
5	\checkmark Missile (x) \vee Weapon(x)	
6	\rightarrow Enemy (x, America) V Hostile (x)	
7	American(West)	
8	Enemy(Nono, America)	
9	-Criminal(West)	$\neg \alpha$
10	\neg American (West) $\vee \neg$ Weapon(y) $\vee \neg$ Sells (West, $\mathrm{y}, \mathrm{z}) \vee \neg$ Hostile(z)	1/9 $\{\mathrm{x} /$ West $\}$
11	Hostile(Nono)	6/8 \{x/Nono \}
12	\neg American (West) $\vee \neg$ Weapon(y) $\vee \neg$ Sells(West, y , Nono)	10/11 \{z/Nono\}
13	- Weapon(y) V -Sells(West, y, Nono)	7/12
14	\rightarrow Owns(Nono, M_{1}) \vee Sells(West, M_{1}, Nono)	$2 / 4\left\{x / M_{1}\right\}$

Example of Resolution using a Table

Line \#	Clause	Lines and rule
1	\neg American (x) $\vee \neg$ Weapon(y$) \vee \neg$ Sells $(x, y, z) \vee \neg$ Hostile (z) \vee Criminal (x)	Given
2	Missle(M_{1})	
3	Owns(Nono, M_{1})	
4	\neg Owns(Nono, x) $\vee \neg$ Missile (x$) \vee$ Sells(West, x , Nono)	
5	\checkmark Missile (x) \vee Weapon $(\mathrm{x}$)	
6	\neg Enemy(x , America) V Hostile (x)	
7	American(West)	
8	Enemy(Nono, America)	
9	-Criminal(West)	$-\alpha$
10	\neg American (West) $\vee \neg$ Weapon(y) $\vee \neg$ Sells (West, $\mathrm{y}, \mathrm{z}) \vee \neg$ Hostile(z)	1/9 \{x/West $\}$
11	Hostile(Nono)	6/8 \{x/Nono \}
12	\neg American (West) $\vee \neg$ Weapon(y) $\vee \neg$ Sells(West, y , Nono)	10/11 \{z/Nono\}
13	\rightarrow Weapon(y) V -Sells(West, y, Nono)	7/12
14	-Owns(Nono, M_{1}) V Sells(West, M_{1}, Nono)	$2 / 4\left\{x / M_{1}\right\}$
15	Sells(West, M_{1}, Nono)	3/14

Example of Resolution using a Table

Line \#	Clause	Lines and rule
1	\neg American (x) $\vee \neg$ Weapon(y) $\vee \neg$ Sells $(x, y, z) \vee \neg$ Hostile (z) \vee Criminal (x)	Given
2	Missle(M_{1})	
3	Owns(Nono, M_{1})	
4	\neg Owns(Nono, x) $\vee \neg$ Missile (x) \vee Sells(West, x , Nono)	
5	\rightarrow Missile (x) \vee Weapon(x)	
6	\checkmark Enemy (x, America) V Hostile (x)	
7	American(West)	
8	Enemy(Nono, America)	
9	-Criminal(West)	$-\alpha$
10	\neg American (West) $\vee \neg$ Weapon(y) $\vee \neg$ Sells (West, $\mathrm{y}, \mathrm{z}) \vee \neg$ Hostile(z)	1/9 \{x/West $\}$
11	Hostile(Nono)	6/8 \{x/Nono $\}$
12	\neg American (West) $\vee \neg$ Weapon(y) $\vee \neg$ Sells (West, y , Nono)	10/11 \{z/Nono\}
13	\rightarrow Weapon(y) V -Sells(West, y, Nono)	7/12
14	-Owns(Nono, M_{1}) \vee Sells(West, M_{1}, Nono)	$2 / 4\left\{x / M_{1}\right\}$
15	Sells(West, M_{1}, Nono)	3/14
16	Weapon(M_{1})	$2 / 5\left\{\mathrm{x} / \mathrm{M}_{1}\right\}$

Example of Resolution using a Table

Line \#	Clause	Lines and rule
1	\neg American (x) $\vee \neg$ Weapon(y) $\vee \neg$ Sells $(x, y, z) \vee \neg$ Hostile (z) \vee Criminal (x)	Given
2	Missle(M_{1})	
3	Owns(Nono, M_{1})	
4	\neg Owns(Nono, x) $\vee \neg$ Missile (x) \vee Sells(West, x , Nono)	
5	\rightarrow Missile (x) \vee Weapon(x)	
6	\checkmark Enemy (x, America) V Hostile (x)	
7	American(West)	
8	Enemy(Nono, America)	
9	-Criminal(West)	$-\alpha$
10	\neg American (West) $\vee \neg$ Weapon(y) $\vee \neg$ Sells (West, $\mathrm{y}, \mathrm{z}) \vee \neg$ Hostile(z)	1/9 \{x/West $\}$
11	Hostile(Nono)	6/8 \{x/Nono $\}$
12	\neg American (West) $\vee \neg$ Weapon(y) $\vee \neg$ Sells (West, y , Nono)	10/11 \{z/Nono\}
13	\rightarrow Weapon(y) V -Sells(West, y, Nono)	7/12
14	-Owns(Nono, M_{1}) \vee Sells(West, M_{1}, Nono)	$2 / 4\left\{x / M_{1}\right\}$
15	Sells(West, M_{1}, Nono)	3/14
16	Weapon(M_{1})	$2 / 5\left\{\mathrm{x} / \mathrm{M}_{1}\right\}$

Example of Resolution using a Table

Line \#	Clause	Lines and rule
1	\neg American (x) $\vee \neg$ Weapon(y) $\vee \neg$ Sells $(x, y, z) \vee \neg$ Hostile (z) \vee Criminal (x)	Given
2	Missle(M_{1})	
3	Owns(Nono, M_{1})	
4	\neg Owns(Nono, x) $\vee \neg$ Missile (x$) \vee \mathrm{Sells}$ (West, x , Nono)	
5	\checkmark Missile (x) \vee Weapon (x)	
6	\neg Enemy (x , America) V Hostile (x)	
7	American(West)	
8	Enemy(Nono, America)	
9	-Criminal(West)	$-\alpha$
10	\neg American (West) $\vee \neg$ Weapon(y) $\vee \neg$ Sells (West, $\mathrm{y}, \mathrm{z}) \vee \neg$ Hostile(z)	1/9 \{x/West $\}$
11	Hostile(Nono)	6/8 \{x/Nono \}
12	\neg American (West) $\vee \neg$ Weapon(y) $\vee \neg$ Sells(West, y , Nono)	10/11 \{z/Nono\}
13	- Weapon(y) V -Sells(West, y, Nono)	7/12
14	\rightarrow Owns(Nono, M_{1}) \vee Sells(West, M_{1}, Nono)	$2 / 4\left\{x / M_{1}\right\}$
15	Sells(West, M_{1}, Nono)	3/14
16	Weapon(M_{1})	$2 / 5\left\{x / M_{1}\right\}$
17	-Sells(West, M ${ }_{1}$, Nono)	12/16 $\left\{y / M_{1}\right\}$

Example of Resolution using a Table

Line \#	Clause	Lines and rule
1	\neg American (x) $\vee \neg$ Weapon(y) $\vee \neg$ Sells $(x, y, z) \vee \neg$ Hostile(z) \vee Criminal (x)	Given
2	Missle(M_{1})	
3	Owns(Nono, M_{1})	
4	\neg Owns(Nono, x) $\vee \neg$ Missile (x$) \vee$ Sells(West, x , Nono)	
5	\rightarrow Missile (x) \vee Weapon(x)	
6	\neg Enemy (x, America) V Hostile (x)	
7	American(West)	
8	Enemy(Nono, America)	
9	-Criminal(West)	$-\alpha$
10	\neg American (West) $\vee \neg$ Weapon(y) $\vee \neg$ Sells (West, $\mathrm{y}, \mathrm{z}) \vee \neg$ Hostile(z)	1/9 \{x/West $\}$
11	Hostile(Nono)	6/8 \{x/Nono \}
12	\neg American (West) $\vee \neg$ Weapon(y) $\vee \neg$ Sells(West, y , Nono)	10/11 \{z/Nono\}
13	- Weapon(y) $\vee-$ Sells(West, y, Nono)	7/12
14	-Owns(Nono, M_{1}) \vee Sells(West, M_{1}, Nono)	$2 / 4\left\{x / M_{1}\right\}$
15	Sells(West, M_{1}, Nono)	3/14
16	Weapon(M_{1})	$2 / 5\left\{x / M_{1}\right\}$
17	-Sells(West, M ${ }_{1}$, Nono)	12/16 $\left\{\mathrm{y} / \mathrm{M}_{1}\right\}$
18	\square	15/17

Summary of FOL

