
Artificial
Intelligence

CS 444 – Spring 2021
Dr. Kevin Molloy

Department of Computer Science
James Madison University Much of this lecture is taken from

Dan Klein and Pieter Abbeel AI class at UC Berkeley

First Order Logic (part 1)

Pros and Cons of Propositional Logic

2

• Propositional logic is declarative: pieces of syntax correspond to facts
• Propositional logic allows partial/disjunctive/negated information
• Propositional logic is compositional: meaning B1,1 ∧ P1,2 is derived from the meaning of

B1,1 and P1,2

• Meaning in propositional logic is context-independent (unlike natural language, where
meaning depends on context).

Propositional logic has very limited expressive power (unlike natural language).
e.g., cannot say “pits cause breezes in adjacent squares”, except by writing one
sentence for each square.

PROS

CONS

First-order Logic

Whereas propositional logic assumes world contains facts, first-order logic (like natural
language) assumes the world contains:
• Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games,

wars, …

• Relations: red, round, bogus, prime, brother of, part of, has color,…

• Functions: father of, best friend of, third inning of, one more than, end of …

3

Logics

4

Language Ontological
Commitment

Epistemological
Commitment

Propositional logic Facts true/false/unknown
First-order logic Facts, objects, relations true/false/unknown
Temporal logic Facts, objects, relations, time true/false/unknown
Probability theory Facts Degree of belief
Fuzzy logic Facts + degree of truth Known internal value

Additional Syntax for FOL: Basic Elements

5

• Constants KingJohn, 2, UCB, …
• Predicates Brother, >, …
• Functions Sqrt, LeftLegOf, …
• Variables x, y, a, b, …
• Connectives ∧ ∨ ¬ ⟹ ⇔

• Equality =
• Quantifiers ∀ ∃

Atomic Sentences

6

Atomic Sentence = predicate (term1, …, termn)
or term1, …, termn

Term = function(term1, …, termn)
or constant or variable

e.g., Brother (KingJohn, RichardTheLionheart)
> (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))

Complex Sentences

7

Complex sentences are made from atomic sentences using connectives.
¬ S, S1 ∧ S2, S1 ∨ S2 S1 ⟹ S2, S1 ⇔ S2

e.g., Sibling(KingJohn, Richard) ⟹ Sibling(Richard, KingJohn)
>(1,2) ∨ ≤ (1,2)
>(1,2) ∧ ¬>(1,2)

Models for FOL

8

Truth in First-order Logic

9

Sentences are true with respect to a model and an interpretation

Model contains ≥ 1 object (domain elements) and relations amongst them

Interpretation specifies referents for:
• Constant symbols → objects
• Predicate symbols → relations
• Function symbols → functional relations

An atomic sentence predicate (term1, …, termn) is true
iff the objects referred to by term1, …, termn are in the relation referred to by the

predicate

Models for FOL

10

Entailment in propositional logic can be computed by enumerating models

We can enumerate the FOL models for a given KB vocabulary:

For each number of domain elements n from 1 to ∞
For each k-ary predicate Pk in the vocabulary

For each possible k-ary relation on n objects
For each constant symbol C in the vocabulary

For each choice of referent for C from n objects

Computing entailment by enumerating FOL models is not easy!

Universal Quantification

11

∀ <variables> <sentence>

∀ x P is true in a model m iff P is true with x being each possible object in the model

Roughly speaking, equivalent to the conjunction of instantiations of P

((At(KingJohn, JMU) ⟹ Smart(KingJohn))
∧ (At(Richard, JMU) ⟹ Smart(Richard))
∧ (At(Berkeley, JMU) ⟹ Smart(Berkeley))
∧ …

Everyone at JMU is smart:
∀ x At(x,JMU) ⟹ Smart(x)

A Common Mistake to Avoid

12

Typically, ⟹ is the main connective with ∀

Common mistake: using ∧ as the main connective with ∀:
∀x At(x, JMU) ∧ Smart(x) means

“Everyone is at JMU and everyone is smart”.

Existential Quantification

13

∃ <variables><sentence>

Someone at Stanford is smart:
∃ x At(x, Stanford) ∧ Smart(x)

∃ x P is true in a model m iff P is true with x being some possible
object in the model.

Roughly speaking, equivalent to the disjunction of instantiations of P
(At(KingJohn, Stanford) ∧ Smart(KingJohn))
∨ (At(Richard, Stanford) ∧ Smart(Richard))
∨ (At(Stanford, Stanford) ∧ Smart(Stanford))

Another Common Mistake to Avoid

14

Typically, ∧ is the main connective with ∃

Common mistake: using ⟹ as the main connective with ∃:
∃x At(x, Stanford) ⟹ Smart(x) is true if

there is anyone who is not at Stanford.

Properties of Quantifiers

15

∃x ∃ y is the same as

∀ x ∀ y is the same as ∀y ∀ x

∃y ∃ x

∃x ∀ y is NOT the same as ∀ y ∃ x

∃x ∀ y Loves(x, y) “There is a person who loves everyone in the
world".

∀ y ∃ x Loves(x, y) “Everyone is loved by at least one person”

Quantifier duality: each can be expressed using the other

∀ x Likes(x, IceCream) ¬ ∃ x ¬ Likes(x, IceCream)
∃ x Likes(x, Broccoli) ¬ ∀ x ¬ Likes(x, Broccoli)

Fun with Sentences

16

Brothers are siblings ∀ x, y Brother(x,y) ⟹ Sibling (x, y)

“Sibling” is symmetric ∀ x, y Sibling(x,y) ⟹ Sibling (y,x)

One’s mother is one’s female parent ∀ x, y Mother(x,y) ⇔(Female(x) ∧ Parent(x,y)

A first cousin is a child of a parent's sibling

∀ x, y FirstCousin(x,y) ⇔∃ p, ps Parent(p, x) ∧ Sibling(ps, p) ∧ Parent(ps,y)

Equality

17

term1 = term2 is true under a given interpretation
If and only if term1 and term2 refer to the same object

e.g., 1 = 2 and ∀ x X(Sqrt(x), Sqrt(x)) = x are satisfiable
2 = 2 is valid

e.g. definition of (full) Sibling in terms of Parent:
∀x, y Sibling(x, y) ⇔ [¬(x =y) ∧ ∃ m, f ¬(m = f) ∧

Parent(m, x) ∧ Parent(f, x) ∧ Parent(m, y) ∧ Parent (f,y)]

Interacting with FOL KBs

18

Suppose a Wumpus-world agent is using an FOL KB and perceives a smell
and a breeze (but no glitter) at t = 5.
• Tell (KB, Percept([Smell, Breeze, None], 5))
• Ask(KB, ∃ a Action (a, 5))

i.e., does KB entail any particular actions at t = 5.

Answer: Yes, {a/Shoot} ← substitution (binding list)
Given a sentence S and a substitution 𝜎,

S𝜎 = denotes the result of plugging 𝜎 into S, e.g.
S = Smarter(x, y)
𝜎 = {x/Liz, y/Kevin}
S𝜎 = Smarter(Liz, Kevin)
Ask(KB, S) returns some/all 𝜎 such that KB ⊨ S𝜎

Knowledge Base for the Wumpus World

19

“Perception”
∀ b, g, t Percept([Smell, b, g], t) ⟹ Smelt(t)
∀ s, b, t Percept ([s, b, Glitter], t) ⟹ AtGold(t)

“Reflex” ∀ t AtGold(t) ⟹ Action(Grab, t)

Reflex with internal state: do we have the gold already?
∀ t At Gold(t) ∧ ¬Holding(Gold, t) ⟹ Action(Grab, t)

Holding(Gold, t) cannot be observed

Keeping track of change is essential.

Deciding Hidden Properties

20

Properties of locations:
∀ x, t At(Agent, x, t) ∧ Smelt(t) ⟹ Smelly(x)
∀ x t At(Agent, x, t) ∧ Breeze(t) ⟹ Breezy(x)

Squares are breezy near a pit (Diagnostic rule – infer cause from effect):
∀ y Breezy(y) ⟹∃ x Pit(x) ∧ Adjacent(x, y)

Causal rule – (infer effect from cause):
∀ x, y Pit(x) ∧ Adjacent(x, y) ⟹ Breezy(y)

Neither of these is complete, e.g., the causal rule doesn’t say whether
squares far away from pits can be breezy
Definition for the Breezy predicate:

∀ y Breezy(y) ⇔ [∃ x Pit(x) ∧ Adjacent(x, y)]

Keeping Track of Change

21

Facts hold in situations, rather than eternally.
e.g., Holding(Gold, Now) rather than just Holding(Gold)

Situational calculus is one way to represent change in FOL:

Adds a situation argument to each non-eternal predicate.
e.g., now in Holding(Gold, Now) denotes a situation

Situations are connected by the Result function
Result(a, s) is the situation that results from doing a in s

Preliminaries on Situation Calculus

22

Situation calculus is a logic formalism designed for representing and
reasoning about dynamical domains.

A dynamic world is modeled as progressing through a series of situations
as a result of various actions being performed within the world

Introduced by John McCarthy in 1963. McCarthy described a situation as
a state. Ray Reiter corrected this (1991):

“A situation is a finite sequence of actions. Period. It’s not a state, its not
a snapshot, it’s a history”.

Describing Actions

23

“Effect” axiom – describe changes due to action
∀ s AtHold(s) ⟹ Holding(Gold, Result(Grab,s))

“Frame” axiom – describe non-changes due to action
∀ s HaveArrow(s) ⟹ HaveArrow(Result(Grab,s))

Frame problem: find an elegant way to handle non-change:
a) Representation – avoid frame axioms
b) Inference – avoid repeated ”copy-vers” to keep track of state
Qualification problem: true descriptions of real actions require endless
caveats – what if gold is slippery or nailed down or …

Ramification problem: real actions have many secondary consequences
– what about the dust on the gold, wear and tear on gloves, …

Describing Actions

24

Successor-state axioms solve the representational frame problem

Each axiom is “about” a predicate (not an action per se):
P true afterwards ⇔ [an action made P true ∨ P true already and no action made P

false]

For holding the gold:
∀ a, s Holding (Gold, Result(a, s)) ⇔

[(a = Grab ∧ AtHold(s)) ∨ (Holding(Gold, s) ∨ a ≠ Release)]

Making Plans – A Better Approach

25

Represents plans as action sequences [a1, a2, …, an]
PlanResult(p, s) is the result of executing p in s

Query: Ask (KB, ∃ p Holding(Gold, PlanResult(p, S0))

Definition of PlanResult in terms of Result:
∀ s PlanResult([], s) = s
∀ a, p, s PlanResult([a|p], s) = PlanResult(p, Result(a,s))

Planning systems are special-purpose reasoners designed to do this type
of inference more efficiently than a general-purpose reasoner.

Has the solution: s/ Result(Grab, Result(Forward, S0))

FOL – Natural Numbers

26

S(n) is a successor function. This allows 0, S(0), S(S(0)), and so on. We need a few axions
to constrain the successor function:

∀ n 0 ≠ S(n)
∀m, n m ≠ n ⟹ S(m) ≠ S(n)

The Peano axioms define natural numbers and addition.
First, we can define them recursively:

NatNum(0)
∀ n NatNum(n) ⟹ NatNum(S(n))

Now we can define addition in terms of the successor function:
∀ m NatNum(m) ⟹ + (0,m) = m
∀ m,n NatNum(m) ∧ NatNum(n) ⟹ +(S(m),n) = S(+(m,n))

FOL – Converting it Back to Propositional Logic

27

Define Universal Instantiation (or UI)
Infer any sentence obtained by substituting a ground term (a term without
variables).

Idea: Utilize FOL by converting it back to propositional logic.

UI is written as: ∀𝑣 "
#$%#&((/* ,")

Examples: {x/John}, {x/Richard},{x/Father(John)}

∀x King (x) ∧ Greedy(x) ⟹ Evil(x)

FOL – Converting it Back to Propositional Logic

28

Define Existential Instantiation
Variable replaced by a single constant symbol. Symbol can not appear
ANYWHERE else in the knowledge base.

Idea: Utilize FOL by converting it back to propositional logic.

UI is written as: ∃𝑣 "
#$%#&((/- ,")

Allows us to infer: Crown(C1) ∧ OnHead(C1, John)

∃x Crown(x) ∧ OnHead(x, John)

Unification

29

Inference in FOL is accomplished through unification. Starting with universal quantifiers:

Standardizing apart eliminates overlap of variables, e.g., Knowns (z17, OJ).

𝛳 = {x/John, y/ John} works. Unification requires that the term we are substituting in is a
ground term (a term without any variable(s)).
Unify(𝛼, 𝛽) = 𝛳 if 𝛼𝛳 = 𝛽𝛳

p q 𝛳

Knowns(John, x) Knowns(John, Jane) {x/ Jane}

Knowns(John, x) Knowns(y, OJ) {x/ OJ, y/ John}

Knowns(John, x) Knowns(y, Mother(y)) {y/John, x/Mother(John)}

Knowns(John, x) Knowns(x, OJ) fail

∀x King (x) ∧ Greedy(x) ⟹ Evil(x)
We can get the inference immediately if we can find a substitution 𝛳 such that King (x)
and Greedy(x) match King(John) and Greedy(John) in our knowledge base.

